Socio-economic impacts of ocean acidification

Katrin Rehdanz

Department of Economics, University of Kiel Kiel Institute for the World Economy (IfW) Kiel Earth Institute

Christian-Albrechts-Universität zu Kiel

What is ocean acidification?

Courtesy R Feely (NOAA)

Motivation: OA and economics

- OA has been gaining increasing recognition in the policy circles recently
- Increasing number of studies on biological and ecological impacts of OA
- But few attempts of economic assessment yet
- Estimates of the socio-economic impact of climate change have largely ignored OA

This causes several biases

- Mitigation of climate change
- Socio-economic impact estimates and costs of adaptation

Economic assessments so far

- Major integrated assessment models based on the costbenefit framework (FUND, DICE, etc.) haven't taken OA into account yet
- They also tend to justify weak climate policy (emission reduction), at least in the near term
- Does OA significantly raise the existing damage estimates of climate change?
- In other words, does inclusion of OA justify stricter climate policy?

Framework for assessing the economic impact of OA

Brander et al. (forthcoming)

1. OA will change marine ecosystems

Organisms react differently to ocean acidification

- Corals and shell builders expected to generally decline
- Seagrasses may increase, some at expense of corals
- Some fish become disoriented under high CO₂

Taxa	Response	Mean Effect	[
2 Alle	Survival			Not tested or too few studies
	Calcification			Enhanced <25%
	Growth			95% Cl overlaps 0
855 200	Photosynthesis	-28%		Reduced <25%
Calcifying algae	Abundance	-80%		Reduced >25%
an anna ba	Survival			
TRACT	Calcification	-32%		
- Star	Growth			
	Photosynthesis			
Corals	Abundance	-47%		
80	Survival	-34%		
	Calcification	-40%		
X D	Growth	-17%		
	Development	-25%		
Mollusks	Abundance			
adding.	Survival		1	
Contra the	Calcification			
	Growth	-10%		
	Development	-11%		
Echinoderms	Abundance			
×1.2	Survival			
	Calcification			
	Growth			
	Development		io l	
Crustaceans	Abundance		B	
	Survival		ge	
	Calcification		an	
Fish	Growth		8	
	Development		, C	
	Abundance		lot	
Fleshy algae	Survival		6	
	Calcification		<i>м</i>	
	Growth	+22%	0	
	Photosynthesis		5	
	Abundance		<u></u>	
Seagrasses	Survival		l i	
	Calcification) (
	Growth		l X	
	Photosynthesis		<u> </u>	
	Abundance			

Framework for assessing the economic impact of OA

Brander et al. (forthcoming)

2. Impact on ocean ecosystem services

- The oceans provide goods and services which are used directly and indirectly by humans
- OA is likely to have a range of impacts on biological and ecological systems including economically important marine resources like fish stocks, shellfish and coral reefs
- > The impact on human societies depend on ...
 - ... the vulnerability, resilience and adaptation capacity of specific communities
 - ... but little is currently known

3. Socio-economic impacts

- Little quantitative information exists on the impact of ocean acidification on the lower trophic levels
- Very little information exists on the higher trophic levels that directly matter to us, such as commercial fish but also other species
- More is known on coral reefs
- This limits economic assessments

Study	Impacts	Geographic scope	Emissions scenario	Period of analysis	Welfare measure	Annual val. (US\$; bil.
Armstrong et al. (2012)	Fisheries	Norway	pH decrease 0.5	2010 – 2110	Revenue	0.01
	Carbon storage	Norway	pH decrease 0.5	2010 – 2110	Damage Cost	3
Brander et al. (2012)	Coral reefs	Global	SRES A1B	2000 - 2100	Mixed	1,093
Cheung et al. (2011)	Fish and invertebrates	N-E Atlantic	SRES A1B	2005 - 2050	-	-
Cooley and Doney (2009)	Mollusks	United States	IPCC A1F1	2007 - 2060	Revenue	0.07
Cooley et al. (2012)	Mollusks	Global	CCSM3	2010 - 2060	-	-
Finnoff (2010)	Fisheries; non- use values	Baring Sea	-	-	-	-
Harrould-Kolieb et al. (2009)	Coral reefs; fisheries	Global	SRES A1B	2009 - 2050	-	-
Hilmi et al. (2012)	All	Global	-	-	-	-
Kite-Powell (2009)	Coral reefs; fisheries	Global	IS92a	-	-	-
Moore (2011)	Mollusks	United States	RCP8.5; RCP6	2010 - 2100	CV	0.31
Narita et al. (2012)	Mollusks	Global	IS92a	2000 - 2100	CS, PS	139
Rodrigues et al. (2013)	Use and non-use values	Mediterranean	-	-	-	-
Sumaila et al. (2011)	Capture fisheries	Global	-	-	-	-

3. Socio-economic assessments so far

- Only partial assessment of the total impacts so far
 - Focus on use values
- Of the 13 existing studies only five provide monetary estimates of the costs of OA
 - 3 focus on mollusk fisheries
 - 1 covers impacts on fisheries and carbon storage
 - 1 is for impacts on coral reefs
- Impacts to coral reefs dominate
- Reduced carbon storage also a potentially important impact category

Gaps in current knowledge

- 1. Understanding the relationship between changes in the marine environment and socio-economic impacts
- 2. The ecosystem services that have been assessed
- 3. The distribution of impacts
- 4. The vulnerability of different populations

Discussion and conclusion

- Quantitative insights are preliminary and incomplete
- OA is different from, but related to climate change
 - OA is caused by CO₂ only
 - OA is expected to occur more rapidly
- Impact on optimal mitigation policy

Thank you!