

Role of biodiversity for high carbon ecosystems

Sandra M. Durán. PhD Candidate Dr. Arturo Sánchez-Azofeifa University of Alberta, Edmonton, Canada <u>sduran@ualberta.ca</u>

Biodiversity as a response variable

Adapted from MEA 2005; Díaz et al. 2005. PloS Biol 4 (8)

Climate regulation: net carbon sequestration

Changes in biodiversity influence carbon gain and loss in tropical ecosystems

Animal species richness per biome

						Iropi	cal and sub-	ropical mois	t broadloaf t	orest
							Jai anu Sub-i			UICSL
				Iropic	al and sub-ti	ropical grass	sland, savani	ha, and shrul	oland	
				Deserts ar	nd xeric shru	oland				
				Tropical an	d sub-tropic	al dry broad	leaf forest			
			Monta	ne grasslar	nd and shrub	land				
		Temp	erate broa	dleaf and r	nixed forest					
		Flooded	grassland a	Ind savann	a					
		Tropical a	nd sub-tro	pical conif	erous forest					
		Temperate	grassland,	savanna, a	nd shrubland	ł				
		Mangroves								
		Temperate c	oniferous f	orest						
	Me	editerranean	forest, wo	odland, and	d scrub					
	Boreal forest, t	aïga								
	Tundra									
)	2 000	4 000	6 000	8 000	10 000	12 000	14 000	16 000	18 000	20 00
ource	e: MA 2005.									

Role of biodiversity

- Different components of biodiversity are important for carbon storage
- Biodiversity components explain greater variation in carbon stocks than climate
- Biodiversity can have positive and negative effects on carbon storage
- Biodiversity-carbon links vary across ecosystem types

How we define biodiversity?

 the number, abundance, composition, spatial distribution, and interactions of genotypes, populations, species richness, functional types and traits, and landscape units in a given system

Díaz et al. 2006. PLoS Biol 4:1300.

What do we know?

Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests

Heather Keith¹, Brendan G. Mackey, and David B. Lindenmayer

Variation in above-ground forest biomass across broad climatic gradients

Biodiversity component: Positive effects of abundance on carbon

J. C. Stegen et al. Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2011) 20, 744–754

Biodiversity component: Positive effects of abundance and functional traits

Disentangling stand and environmental correlates of aboveground biomass in Amazonian forests

Proportion of explained variation

Residuals = 0.07

Evergreen ecosystems

Functional traits include

- wood density
- Plant height

Biodiversity component: Positive effects of species richness

Biodiversity component: Functional types: lianas

Ecosystems

DeciduousSemideciduousEvergreen

- 40% of woody stems
- Up to 25 % of species richness

Carbon stocks decrease with liana abundance

Durán & Gianoli 2013. Biol Lett 9:20130301.

- Explained variation 11% as much as temperature
- lianas could reduce
 carbon stocks by up to
 50%

Carbon emission from deforestation

Ramankutty et al. 2006. Global Change Biol 13: 51-66

Secondary growth

http://www.cd3wd.com/cd3wd_40 (green square)

Houghton 2005. Global Change Biol 11:945 (figure)

Biodiversity component: Positive effects of species richness

Regrowth vegetation in savannas & caatinga

Explained variation = 15% after controlling for stand age and climate

Biodiversity component: Positive effects of species richness

Early (~ 11 years)

Intermediate ~ 31 years

Late > 50 years

Biodiversity important for carbon stocks estimations

- Carbon stocks maximized by abundance and functional traits on wet areas
- Biodiversity components explain greater variation in carbon stocks than climate in evergreen and semideciduos ecosystems
- Functional types such as lianas have the potential to reduce up to 50% of carbon stocks
- □ Carbon stocks are maximized by mixed-species stands in mature and secondary savannas

Biodiversity important for resilience

Ecosystem resilience: the capacity to recover after perturbation

Thompson et al., 2009. CBD Technical Series No 43

Including biodiversity in carbon stock estimations

Evergreen/semideciduous

Tropical savannas

Adapted from Baraloto et al. 2011 Global Change Biol 17: 267

Capacity-Building in Latin America

IAI within Tropi-dry has provided scholarships for 177 students since 2007 in Latin America

SBSTA-38 encouraged higher level of participation by scientists from developing countries in climate change research and dissemination

INTER-AMERICAN INSTITUTE FOR GLOBAL CHANGE RESEARCH

Thank you!

