Tidal Marshes

Contribution to Climate Change Mitigation and Adaptation

Stephen Crooks Ph.D.

Conservation International and Environmental Science Associates

UNFCCC Workshop on technical and scientific aspects of ecosystems with high-carbon reservoirs not covered by other agenda items under the Convention Oct 26nd 2013, Bonn, Germany.

Wetlands Feed Fish (floodplain fatties)

ESA

37 years of restoration experience

1400 wetlands projects

Restoration planning for 26,000 ha of wetlands

\$3 billion dollars cost estimate

Plan part of state water management and climate change adaptation

nodeling of wetland response to sea level rise

OURCE:

DWR 2007 LiDAR; ESA-PWA 2012 Elevations

Figure 1 Elevations and ROAs of Delta-Suisun Marsh Planning Area

ESA PWA

Continuum of coastal ecosystems – loss over time

6

405 km of levees 870 km² of drained wetlands

Contraction >99% decrease Release of historic carbon Andrews et al., 2000, 2006

The Humber Estuary

Extensive diked wetlands Post industrial estuary Agricultural run-off

Long term carbon sequestration

Distribution of carbon in coastal ecosystems

8

Data summarized in Crooks et al., 2011; Murray et al., 2011, Donato et al., 2011

Drainage brings carbon loss

Surface from SRTM

Volume calculated between marshplain elevation and present day land surface

Mitigating Climate Change through Restoration and Management of Coastal Wetlands and Near-shore Marine Ecosystems

Challenges and Opportunities

Stephen Crooks, Dorothée Herr, Jerker Tamelander, Dan Laffoley, and Justin Vandever

darch 2011

Susteinable Development Vice Presidency

Drainage is wide spread in coastal areas

Nile Delta

Legend Nile River m marchpiain

< -10
-5
-4
-3
-2
-1
0
1
2
3
4
5
10
>10

100 Kilometers

50

0

Mitigating Climate Change through Restoration and Management of Coastal Wetlands and Near-shore Marine Ecosystems Challenges and Opportunities

Stephen Crooks, Dorothée Herr, Jerker Tamelander, Dan Laffoley, and Justin Vandever

March 201

Sustainable Development Vice Presidency

Estimating Global "Blue Carbon" Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems

Linwood Pendleton^{1®}, Daniel C. Donato²*[®], Brian C. Murray¹, Stephen Crooks³, W. Aaron Jenkins¹, Samantha Sifleet⁴, Christopher Craft⁵, James W. Fourqurean⁶, J. Boone Kauffman⁷, Núria Marbà⁸, Patrick Megonigal[®], Emily Pidgeon¹⁰, Dorothee Herr¹¹, David Gordon¹, Alexis Baldera¹²

Table 1. Estimates of carbon released by land-use change in coastal ecosystems globally and associated economic impact.

	Inputs			Results		
Ecosystem	Global extent (Mha)	Current conversion rate (% yr ⁻¹)	Near-surface carbon susceptible (top meter sediment+biomass, Mg CO ₂ ha ⁻¹)	Carbon emissions (Pg CO ₂ yr ⁻¹)	Economic cost (Billion US\$ yr ⁻¹)	
Tidal Marsh	2.2-40 (5.1)	1.0-2.0 (1.5)	237-949 (593)	0.02-0.24 (0.06)	0.64-9.7 (2.6)	
Mangroves	13.8-15.2 (14.5)	0.7-3.0 (1.9)	373-1492 (933)	0.09-0.45 (0.24)	3.6-18.5 (9.8)	
Seagrass	17.7-60 (30)	0.4-2.6 (1.5)	131-522 (326)	0.05-0.33 (0.15)	1.9-13.7 (6.1)	
Total	33.7-115.2 (48.9)			0.15-1.02 (0.45)	6.1-41.9 (18.5)	
		Compare to national				
	Compare to national			Poland J	apan	

Historic San Francisco Estuary

Long-term release of carbon from organic soils

Sacramento - San Joaquin Delta

Emissions from One Drained Wetland: Sacramento-San Joaquin Delta

Area under agriculture

180,000 ha

Rate of subsidence (in)

1 inch

3-5 million tCO_2/yr released from Delta

1 GtCO₂ release in c.150 years 4000 years of carbon emitted Equiv. carbon held in 25% of California's forests

Accommodation space: 3 billion m³

Mildred

Subsidence of SJ-Sacramento Delta Peatlands

Problem

Solution

Peat restoration through wetland restoration

West Pond 25 cm deep

East Pond 55 cm deep

7 ha of experimental wetlands on Twitchell Island

Carbon Capture Wetland Farm Bio-Sequestration

Stops peat oxidation and accretes "proto-peat" rapidly

Continuously submerged about 1 ft

Low oxygen conditions

Balance between plant growth and reduced decomposition

Average annual <u>soil sequestration</u>: 1 kg C m⁻² yr⁻¹ in soil

Miller et al. 2008, SFEWS

Experimental Wetland "Peat" Accretion: Average gain of 2 inches per year Average gain of 1 kg carbon per m⁻² per year

Net GWP Fluxes (from Eddy Covariance April 2011-2012)

U.S. Geological

Snohomish Estuary (draft data)

- 4000 ha original marsh, 600ha remaining.
- Mostly converted to agriculture and abandoned agr (wet soils).
- Subsided by c.2m
- 4.4 Mt CO2 released since 1930 (conservative estimate).
- 2000 of readily restorable land, (1000 restoration planned) would sequester 1.5 Mt CO2
- Sea level rise would add to sequestration by restored wetlands.
- Snohomish represents about 10% of drained tidal marshes in Puget Sound (in progress)

Snohomish Estuary: soil carbon sequestration (draft data)

Site Name	Land for type	Sediment Accretion rate (cm / yr)	Carbon accumulation rates (Mg CO2/ha/yr)
Quiladeda Marsh	Natural marsh	0.43	4.0
Heron Point	Forest wetland	0.18	2.0
Otter Island	Forest wetland	0.58	6.3
North Ebey	Restoring marsh	1.61	13.9
Spencer Island	Restoring marsh	0.35	3.3

What about remaining and restoring wetlands, and their response to sea level rise?

Marshplain evolution rajectory

"A simple world" Temporal and spatial variability imiting factors nat could affect dpoint ow sediment supply Mind-waves

Wetland Sedimentation

Using methods from Krone 1987.

Low Marsh Response to SLR for Ranging Sediment Availability

Modeled with Marsh98

Stralsburg et al. 2011

Conclusions

- Emissions from coastal marshes are significant.
- Distribution of ongoing and new emissions uncatalogued.
- Emissions from converted wetlands greater than restoring wetlands, though exceptions exist.
- Collection of Tier 2 emissions factors would inform regional accounting, refined for local ecological and activity conditions.

Stephen Crooks Director Climate Change Services ESA PWA +1 415 272 3916 <u>SCrooks@esassoc.com</u>