

Empowered lives. Resilient nations.

Lebanon's Second Biennial Update Report to the UNFCCC

Ministry of Environment Beirut, Lebanon October 2017

This document should be referenced as:

MoE/UNDP/GEF (2017). Lebanon's second biennial update report to the UNFCCC. Beirut, Lebanon.

The climate change project management team

Vahakn Kabakian, Portfolio Manager/Climate Change Advisor Lea Kai Aboujaoudé, Project Manager Yara Daou, Project Research Assistant Mary Awad, Project Assistant

UNFCCC focal point

Samar Malek, Acting Head of Service of Environmental Technology, Ministry of Environment

Copyright © 2017 by the Ministry of Environment – United Nations Development Programme

Reproduction is authorized provided the source is acknowledged and provided the reproduction is not sold.

The United Nations Development Programme (UNDP) is the UN's global development network, advocating for change and connecting countries to knowledge, experience and resources to help people build a better life. We are on the ground in 166 countries, working with them on their own solutions to global and national development challenges. As they develop local capacity, they draw on the people of UNDP and our wide range of partners.

For more information

http://climatechange.moe.gov.lb/ climatechange@moe.gov.lb

Disclaimer

The contents of this document are the sole responsibility of its authors, and do not necessarily reflect the opinion of the Ministry of Environment or the United Nations Development Programme, who will not accept any liability derived from its use.

This study can be used for research, teaching and private study purposes. Please give credit where it is due.

Lebanon's Second Biennial Update Report to the UNFCCC

Executed by Ministry of Environment

Funded by Global Environment Facility

Implemented by United Nations Development Programme, Lebanon

Main authors Léa Kai Aboujaoudé Yara Daou Chalfoun

Contributing authors

Dr. Charbel Mansour Dr. Charbel Afif Dr. Georges Mitri Mr. Nader Hajj Shehadeh

Internal Reviewer

Vahakn Kabakian

Acknowledgments

Mr. Zakaria Rammal Mr. Karim Osseiran Mr. Jean Stephan Mr. Marwan Rizkallah Mr. Jean Boustani Ms. Amal Salibi Mr. Zafer Chaoui

Foreword

Lebanon's Second Biennial Update Report (BUR) to the United Nations Framework Convention on Climate Change (UNFCCC) was prepared with the Enhanced Transparency Framework of the Paris Agreement in mind. Fully aware of the challenges and gaps that it had to face during the preparation of the First Biennial Update Report, and encouraged by the guidance and assessment under the International Consultation and Analysis (ICA) process, the BUR expert team drafted more than a report. It started drafting a vision for efficient institutional arrangements and transparent reporting of emissions, mitigation, finance and MRV for the Paris Agreement implementation era. While this vision is far from being complete and perfect, it has created the much needed national momentum for a broader involvement of national stakeholders and a sense of responsibility towards established and upcoming UNFCCC processes.

The importance of the Second BUR also lies in the appropriation of its dual international and national dimension. While Lebanon understands that preparing a BUR is an opportunity to assess gaps and needs in terms of climate finance and capacity building, and to monitor progress of implementation of national development and sectoral policies with mitigation action components, the country is also fully ready to participate in the international stocktaking cycles. Cautiously and consistently submitting constantly improved BURs shows that we strongly believe in joining efforts to make sure we are collectively efficiently working as parties towards achieving the global temperature goal we have set for the planet under the Paris Agreement.

Concretely, main improvements on the technical level in the present BUR include a detailed trend analysis, an incorporation of all recommendations from the ICA process in terms of reporting capacity building needs, and improved tables with more complete information for reporting mitigation actions and finance and capacity building information in line with discussed suggestions by parties in the Ad Hoc Working Group on the Paris Agreement (APA). Institutionally, Lebanon's Second BUR has been an opportunity to launch work on a national data repository for tracking emissions and progress on the implementation of the Intended Nationally Determined Contribution (INDC), on the design of a climate finance reporting system, and on the establishment of standard procedures for preparation and communication of BURs.

It is with great honour and enthusiasm that I present Lebanon's Second Biennial Update Report to the international community. We hope readers will be able to appreciate our progress and challenges, and we are looking forward to an era of unprecedented multilateral cooperation to advance implementation of climate action through improved reporting.

T

Tarek El Khatib Minister of Environment

Table of contents

Tabl	e of contents	v
List	of figures	vii
List	of tables	.viii
Acro	nyms	xi
Exec	utive Summary	.xiv
I.	National circumstances	1
1	Government structure	1
2	Population profile	2
3	Geographic profile	2
4	Climate profile	3
5	Economic profile	3
6	Energy	3
7	Transport	4
8	Industry	5
9	Waste and wastewater	7
10	Agriculture	9
11	Land use, land use change and forestry	12
	,,,	
II.	The national GHG inventory in 2013	14
1	The GHG inventory preparation process	17
2	Breakdown of emissions by IPCC sector	19
	2.1 Energy	19 36
	2.3 Agriculture	30 41
	2.4 Land use, land use change and forestry	54
_	2.5 Waste and wastewater	59
3	Key category analysis	66
4	Trend analysis	66
5	Indirect GHG emissions	71
6	Quality assurance/ quality control procedures	73
	6.1 Quality control	73 74
	6.3 Uncertainty analysis	74 75
ш	Mitigation policies and actions	75
1		
ו ס		/3
2	Transport	
•		/0
3	Land-Use, Land Use Change and Forestry	79

5	Information on international market mechanisms	82				
IV.	Lebanon's transparency framework, institutional arrangements and MRV system 83					
	Minister of Environment decision 99/1	83				
	Cooperation between Ministries of Environment, Industry and of Finance	83				
	The Lebanon Climate Act initiative: reporting of climate change mitigation and adaptation	02				
	Transparency law – access to public information	03 84				
	Management and Information System for Climate Action (MISCA)	84				
V. incl	Constraints and gaps, and related financial, technical and capacity needs, uding a description of support needed and received	85				
1	Gans, constraints and needs	85				
•	1.1 Gaps and constraints in the BUR preparation process	85				
	1.2 Gaps and constraints in inventory preparation	87				
	1.3 Gaps and constraints in capturing and reporting of mitigation actions	90				
	1.4 Gaps and constraints in reporting of finance and capacity building needs and suppor	t or				
	1.5 Gaps and needs in establishing of a national MRV system	92				
2	Information on support received	93				
VI.	Other information considered relevant to the achievement of the convention .	97				
	1. Teacher's guide on climate change for schools in Lebanon	97				
	2. How to create value from climate change: a guide for businesses in Lebanon	97				
Refe	erences	98				
Ann	exes	.102				
Ann	ex I. GHG inventory technical annex	.103				
Ann	ex II. Activity data and emission factor - indirect gases in industrial processes.	.107				
Ann	ex III. Activity data for the agriculture sector	.110				
Ann	ex IV. Land-use classification, definitions and disaggregation	.110				
Ann	ex V. Recalculations	.129				
Ann	ex VI. Mitigation actions of energy sector	.131				
Ann	ex VII. Mitigation actions of LULUCF	.149				
Ann	ex VIII: Gaps and constraints	.155				

List of figures

Figure 1: Geographical location of Lebanon	2
Figure 2: The 2013 vehicle fleet distribution	5
Figure 3: Distribution of industrial establishments by economic activity in 2007 in Lebanon	6
Figure 4: Agricultural land use in Lebanon (% of total agriculture area)	10
Figure 5: Agricultural production in Lebanon	11
Figure 6: Lebanon's national greenhouse gas inventory by category in 2013	14
Figure 7: Lebanon's national greenhouse gas inventory by gas in 2013	15
Figure 8: GHG Inventory preparation process	18
Figure 9: Distribution of fuel used in Lebanon	22
Figure 10: Classification per country of origin of the 2010 Lebanese vehicle fleet	32
Figure 11: Contribution of energy emission sources to the sector's total for 2013	33
Figure 12: Amount of gas diesel oil and fuel oil consumed per subcategory	34
Figure 13: CO ₂ emissions from industrial processes in Lebanon per category	41
Figure 14: GHG emissions by agricultural source (Gg) and contribution (% of total from agriculture)	50
Figure 15: Distribution of methane emissions from manure management per selected species in 2013	52
Figure 16: Amount of nitrogen (kg N/year) excreted from animals in different manure management syster	ms in
Lebanon in 2013	53
Figure 17: Contribution of subcategories to direct and indirect emissions from agricultural soils in 2013	54
Figure 18: CO ₂ emissions/removals by category in 2013	58
Figure 19: Trend in GHG emissions 1994-2013	68
Figure 20: Trend of GHG emissions 1994-2013	69
Figure 21: Fuel import and GHG emissions trends of the energy sector	69
Figure 22: CO ₂ emissions/removals from the changes in the LULUCF sector	71
Figure 23: Indirect GHG emissions and SO ₂ emissions in 2013	72
Figure 24: Emissions of indirect greenhouse gases from industrial processes for the year 2013	73

List of tables

Table 1: Lebanon's Intended Nationally Determined Contribution	1
Table 2: OMSAR-implemented MSW Treatment Facilities (outside GBA and Mount Lebanon)	8
Table 3: Lebanon's GHG emissions and removals for 2013 per gas and category	16
Table 4: Sources of activity data	17
Table 5: Reporting categories under stationary combustion	. 19
Table 6: Reporting categories under mobile combustion	20
Table 7: Activity data for the energy sector	21
Table 8: Quantities of fuel imported for the period 1994-2013 (for selected years)	23
Table 9: Distribution of fuel consumption by end-use for 2013	23
Table 10: Activity data for fuel consumption in energy industries	24
Table 11: Activity data for fuel consumption in manufacturing industries and construction	25
Table 12: Description of the vehicles categories used in the calculation of road transport emissions	25
Table 13: Classification of the 2013 vehicle fleet per category and EU emission control technologies	s26
Table 14: Activity data for fuel consumption in the commercial and institutional sector	. 29
Table 15: Fuel consumption for marine bunkers ktonnes/year	. 29
Table 16: Carbon content, net calorific value and other parameters by fuel type	. 30
Table 17: CH ₄ and N ₂ O emission factors	30
Table 18: Default FU emission factors for gasoline passenger cars under the tier 2 methodology	.31
Table 19: Default FU emission factors for gasoline light-duty vehicles under the tier 2 methodology	/31
Table 20: Default EU emission factors for diesel heavy-duty vehicles under the tier 2 methodology	31
Table 21: Default EU emission factors for motorcycles under the tier 2 methodology	32
Table 22: GHG emissions from energy by source category and gas for 2013	33
Table 23: Transport sector GHG emissions for 2013	34
Table 24: Ω_{2} emissions from manufacturing industries and the commercial/institutional sector	r in
2013	35
Table 25: Difference in GHG emissions from manufacturing industries and t	the
commercial/institutional sector	35
Table 26: Difference between the reference and sectoral approach for 2013	36
Table 27. Reporting categories investigated in the inventory of the Lebanese industrial proces	Ses
sector	36
Table 28: Summary of data sources used in the GHG inventory for the industrial processes sector	38
Table 29: Activity data for industrial processes in Lebanon for selected years	38
Table 30: Emission factors and other parameters for industrial processes	30
Table 31: CO ₂ emissions from industrial processes in Lebanon for selected years	10
Table 32: Summary of data sources used in the GHG inventory for the agricultural sector	12
Table 32: Activity Data for livestock population in Lebanon for selected years	42
Table 34: Fraction of Manure Nitrogen per Manure Management System (MMS) in Lebanon based	43 00
expert judgement	11
Table 25: Amount of synthetic fortilizer applied to soil in Lebanon for selected years	44
Table 35: Amount of synthetic refunzer applied to soli in Lebanon for selected years, reported in tennes on a s	44 dru
matter basis	ury 44
matter pasis	44
Table 37: Amount of non-N fixing crop produced in Lebanon for selected years, reported in tonnes	on
a dry matter basis	45
Table 38: Methane emission factors for enteric fermentation	45
Table 39: Methane emission factors for manure management.	46
Table 40: Nitrogen excretion rate for animal species and fraction of manure managed in each mani	ure
management system in Lebanon	4/
Table 41: Emission factors for Nitrous Oxide emission for each utilized manure management syste	mد
	47

Table 43: Factors used for the calculation of nitrogen from animal manure	48
Table 44: Factors used for the calculation of nitrogen from crop residues	49
Table 45: Fractions and emission factors used for calculating indirect emissions from agricultural	soils
	49
Table 46: GHG emissions for the agriculture sector for selected years	50
Table 47: Methane emissions from enteric fermentation for selected years	51
Table 48: Nitrous oxide emissions from major manure management systems utilized in Lebanor	n for
selected years	52
Table 49: Total emissions from agricultural soils and its subcategories in Lebanon for selected y	ears
	53
Table 50: Land use categories and subcategories, carbon pools and non-CO ₂ gases accounted for	or in
the inventory estimation of the LULUCF sector in Lebanon	54
Table 51: Causes of GHG emissions and removals reported for the LULUCF sector in Lebanon	55
Table 52: Lebanon's GHG emissions/removals summary from the LULUCF sector for 2013	56
Table 53: Changes in emissions/removals in 2013	57
Table 54: Emissions from burned areas in 2013	58
Table 55: Lebanon's GHG emissions/removals summary from the LULUCF sector for the period 1	994-
2013 (for selected years)	59
Table 56: Activity data for solid waste emissions calculations	60
Table 57: Main data collected and computed for solid waste	61
Table 58: Solid waste generation and disposal considered for Syrian Displaced for the year 2013	61
Table 59: Description of SWDS categories	62
Table 60: Proportion of waste received by each category of unmanaged sites	62
Table 61: Quantities of medical waste being incinerated	62
Table 62: Activity data and assumptions made for wastewater emissions calculations	63
Table 63: Specific data for wastewater	63
Table 64: Parameters adopted for methane generation from MSW	64
Table 65: Methane correction factor from SWDS	64
Table 66: Incineration default values considered for HCW and municipal waste	64
Table 67: Wastewater parameters and conversion factors	64
Table 68: Wastewater methane emission factor for commercial and domestic wastewater	65
Table 69: Wastewater methane emission factor for commercial and domestic wastewater	65
Table 70: Parameters used for N ₂ O emissions calculation	65
Table 71: Greenhouse gas emissions from solid waste and wastewater per gas in 2013	66
Table 72: Key category analysis for 2013	66
Table 73: Changes in national emissions after recalculation	67
Table 74: Changes in emissions of the year 1994 after recalculations	67
Table 75: Trend of emissions during the period 1994-2013	67
Table 76: Trends of road transport emissions in Gg/year and in % during the period 1994-2013	70
Table 77: Indirect GHG emissions and SO ₂ emissions in 2013	72
Table 78: Indirect GHG emissions for the transport sector in Gg in 2013	72
Table 79: Types of energy mitigation measures	76
Table 80: Summary of mitigation activities in Lebanon in 2013	77
Table 81: Increasing energy efficiency and introducing E in public power production	78
Table 82: Summary of annual GHG removals per type of mitigation project (2005-2011)	79
Table 83: Summary of achieved removals as per 2013	81
Table 84: CDIVI project in Lebanon	82
Table 85: Challenges and needs for the preparation and communication of BURs	86
Table 86: Gaps related to the preparation of GHG emissions in the energy sector	8/
Table 87: data-specific gaps related to the preparation of GHG emissions in the agriculture sector	88
Table 80. Gaps for the calculation of GHG emissions from the Waste sector	
i able אסי. Data gaps in preparing mitigation actions for the other sectors	90

Table 90: Data gaps in capturing and reporting mitigation actions for the energy sector	91
Table 91: Challenges hindering complete and transparent climate finance reporting	
Table 92: Financial support received by the Ministry of Environment since the submission of	the first
BUR	
Table 93: Capacity building received by the Ministry of Environment	95

Acronyms

AFDC	Association for Forests, Development and Conservation
BRT	Bus Rapid Transit
CAS	Central Administration of Statistics
CCCU	Climate Change Coordination Unit
CCGT	Combined Cycle Gas Turbines
CDR	Council for Development and Reconstruction
CDM	Clean Development Mechanism
CFL	Compact Fluorescent Lamp
CEDRO	Country Energy Efficiency and Renewable Energy Demonstration Project for the Recovery of Lebanon
CNRS	National Council for Scientific Research
СоМ	Council of Ministers
СОР	Conference of Parties
DGUP	Directorate General for Urban Planning
DM	Dry Matter
DO	Diesel Oil
DREG	Decentralized Renewable Energy Power Generation
EIA	Environmental Impact Assessment
EDL	Electricité du Liban
E/R	Emissions/Removals
FAO	Food and Agriculture Organization
FSRU	Floating Storage And Regasification Unit
FSV	Facilitative sharing of views
GBA	Greater Beirut Area
GDP	Gross Domestic Product
GEF	Global Environment Facility
GHG	Greenhouse Gas
GIS	Geographic Information System
GIZ	The Deutsche Gesellschaft für Internationale Zusammenarbeit
GoL	Government of Lebanon
GPG	Good Practice Guidance
GPS	Global Positioning System
GWP	Global Warming Potential
HCW	Health Care Waste
HDV	Heavy-Duty Vehicles
HFO	Heavy Fuel Oil
HPS	High Pressure Sodium
HRSG	Heat Recovery Steam Generators
ICA	International Consultation and Analysis
IFAD	International Fund for Agricultural Development
ITS	Informal Tent Settlements

INC	Initial National Communication			
IPCC	Intergovernmental Panel on Climate Change			
IPP	Independent Power Producer			
IPTEC	IPT Energy Center			
IWRM	Integrated Water Resoure Management			
КР	Kyoto Protocol			
LAF	Lebanese Army Forces			
LARI	Lebanese Agricultural Research Institute			
LDV	Light-Duty Vehicles			
LCEC	Lebanese Center for Energy Conservation			
LECB	Low Emission Capacity Building Project			
LED	Light Emitting Diode			
LIBNOR	Lebanese Standards Institution			
LPG	Liquefied Petroleum Gas			
LNG	Liquefied Natural Gas			
LRF	Lebanon Recovery Fund			
LRI	Lebanese Reforestation Initiative			
LULUCF	Land Use, Land Use Change and Forestry			
MEA	Middle East Airlines			
MMS	Manure Management System			
MoA	Ministry of Agriculture			
MoE	Ministry of Environment			
MoEW	Ministry of Energy and Water			
Mol	Ministry of Industry			
MolM	Ministry of Interior and Municipalities			
MoPWT	Ministry of Public Works and Transport			
MPG	Modalities, Procedures and Guidelines			
MRV	Measuring, Reporting and Verifying			
MRVCE	Measuring, Reporting and Verifying Coordinating Entity			
MSW	Municipal Solid Waste			
NAMA	Nationally Appropriate Mitigation Action			
NDC	Nationally Determined Contribution			
NEEAP	National Energy Efficiency Action Plan			
NEEREA	National Energy Efficiency and Renewable Energy Action			
NCE	National Council for the Environment			
NCV	Net Calorific Value			
NG	Natural Gas			
NGO	Non-Governmental Organization			
NREAP	National renewable Energy Action Plan			
NRP	National Reforestation Plan			
OMSAR	Office of the Minister of State for administrative Reform			
PC	Passenger Cars			
PRP	Pasture Range and Paddock			

Pr	Persons
PV	Photovoltaics
QA/QC	Quality Assurance/Quality Control
RISICO	RISchio Icendi e COordinamento
SLM	Sustainable Land Management
SNC	Second National Communication
SWH	Solar Water Heaters
UN	United Nations
UNDP	United Nations Development Programme
UNFCCC	United Nations Framework Convention on Climate Change
USAID	United States Agency for International Development
USDA	United States Department of Agriculture
USFS	United States Forest Service
WtE	Waste to Energy
WUI	Wildland-Urban Interface
WWE	Water and Wastewater Establishment
WWTP	Wastewater Treatment Plant

Executive Summary

National circumstances

Lebanon is located on the eastern basin of the Mediterranean Sea with a surface area of 10,452 km², characterized by mostly mountainous areas. The country's population is estimated to be 6,131,254 in 2013, including foreign workers, Palestinian and Syrian displaced. It is estimated that 858,641 displaced have settled in Lebanon in 2013, including Syrian nationals, Palestine Refugees from Syria and Lebanese returnees.

Lebanon's economy is relatively diversified with trade, manufacturing, construction and finance representing around half of the economy, and a Gross Domestic Product (GDP) of USD 49.9 billion in 2014 and a GDP per capita of USD 18,052. Lebanon's growth track record is volatile. During the period 2006-2010, real GDP growth averaged 7.7% before falling to 1.9% in 2011-2015 as a result of geopolitical developments.

Lebanon is a sovereign state with a centralized political and administrative structure. The decisionmaking involves the Lebanese Parliament (128 seats) and the Council of Ministers which enacts regulations in the form of decisions and decrees. The Environmental Protection Law (law no. 444/2002) is the overarching legal instrument for environmental protection and management in Lebanon and the National Council for the Environment (NCE) chaired by the Ministry of Environment is the body responsible for providing environmental policy and planning.

Greenhouse gas inventory

In 2013, Lebanon emitted 26,285 Gg CO₂eq. with the most significant greenhouse gas being carbon dioxide, primarily produced from the burning of fossil fuels. The main contributor to greenhouse gas emissions is the energy sector (including transport) with 79% of GHG emissions, followed by industrial processes (10%) and waste sector (7%). CO₂ removals from the land use, land use change and forestry category amounted to 3,518.80 Gg CO₂, bringing Lebanon's net emissions down to 22,766 Gg CO₂eq.

Figure i: Lebanon's national greenhouse gas inventory by category in 2013

Greenhouse gas source and sink categories	CO ₂ emissions	CO ₂ removals	CH₄	CH₄	N ₂ O	N ₂ O	Total
	Gg	Gg	Gg	Gg CO₂ea.	Gg	Gg CO₂ea.	Gg CO₂eq.
Total national emissions and removals	23,246.21	-3,518.80	96.68	2,030.36	3.25	1,008.53	26,284.69
1 Energy	20,551.07		2.12	44.47	0.58	179.56	20,775.10
Energy industries	7,367.39		0.297	6.25	0.06	18.44	7,392.08
Manufacturing industries and construction	4,403.84		0.106	2.23	0.03	9.89	4,415.96
Transport	5,987.93		1.273	26.74	0.46	143.69	6,158.35
Other sectors	2,791.91		0.441	9.26	0.02	7.55	2,808.72
Fugitive emissions from fuels	NO		NO	NO			NO
2 Industrial processes	2,545.42						2,545.42
Mineral products	2,545.42						2,545.42
Chemical industry	NE		NE		NE		NE
Metal production	NO		NO		NO		NO
Other production	NA		NA		NA		NA
Production of halocarbons and sulphur							NO
Consumption of halocarbons and sulphur							NE
Other	NO		NO		NO		NO
3 Solvent and other product use	NE				NE		NE
4 Agriculture			14.55	305.55	2.20	682.00	987.55
Enteric fermentation			12.64	265.44			265.44
Manure management			1.91	40.11	0.55	170.50	210.61
Rice cultivation			NO	NO			
Agricultural soils					1.65	511.50	511.50
Prescribed burning of savannas			NO	NO	NO	NO	NO
Field burning of agricultural residues			NO	NO	NO	NO	NO
Other			NO	NO	NO	NO	NO
5 Land use, land use change and forestry	149.67	-3,518.80	0.01	0.23	0.0001	0.04	149.95
Changes in forest and other							
Forest and grassland							
conversion							
Abandonment of managed lands							
CO ₂ emissions and removals							
from soil			00.00	4 600 11	0.17	446	4 000 00
6 Waste	0.05		80.00	1,680.11	0.47	146.51	1,826.67

Table i: Lebanon's GHG emissions and removals for 2013 per gas and category

Lebanon's Second Biennial Update Report to the UNFCCC

Solid waste disposal on land		60.91	1,279.14		0.00	1,279.14
Wastewater handling		19.09	400.97	0.47	146.51	547.48
Waste incineration	0.05					0.05

NA: not applicable – NE: not estimated – NO: not occurring Numbers may reflect rounding.

Indirect greenhouse gases such as carbon monoxide (CO), nitrogen oxides (NOx) non-methane organic volatile compounds (NMVOCs) and sulphur dioxide which have indirect impacts on climate and alter the atmospheric lifetimes of other greenhouse gases have also been estimated. In Lebanon, the transport sector is the major source of indirect greenhouses, being responsible for 61% of NO_x emissions, 99% of CO emissions and 65% of NMVOCs. Fuel combustion for energy production is the main emitter of SO₂ with 94% of emissions, mainly caused by the sulphur content in burnt fuel. As for industrial processes, they mainly emit NMVOCs, being responsible for 34% of these emissions.

Figure ii: Indirect GHG emissions and SO₂ emissions in 2013

Lebanon's GHG emissions are increasing at an average rate of 3.4% every year, which lead to a doubling of emissions since 1994. The trend of increase in total GHG emissions closely follows the trend of emissions from the energy sector, which constituted 53% to 59% of total emissions during this period. This significant growth in emissions reflects the growing demand for electricity, due in part to the changing socio-economic conditions and to the expansion of the national grid. The 2 detectable drops in 2007 and 2010 and the significant increase in 2009 are mainly due to the impacts of the July 2006 war where significant damage to the road network and electricity infrastructure was inflicted. The rehabilitation of the infrastructure extended over 2 years, and it was not until 2009 that power plants started to run on full capacity again, hence explaining the peak in GHG emissions in 2009.

The sector with the most significant change in emissions is still the transport sector with emissions increasing by a factor of 3.9 reaching 6.1 million tonnes CO_2eq . in 2013. This increase is mostly related to the upturn of the number of registered vehicles in Lebanon from 500,000 in 1994 to 1,640,000 in 2013.

The waste sector also witnessed a significant increase in emissions, increasing by a factor of 2.4 from 1994. With an increase in population, in waste generation and in percent of waste deposited in landfills, methane emissions from solid waste disposal on land have increased by 93% during this period.

The agriculture sector is still showing a decrease in emissions with a reduction of -5% from the 1994 levels, mainly due to the decrease in emissions from agricultural soils and to a lesser extent from enteric fermentation.

As for Land Use, Land Use and Forestry, forests are still constituting important sinks of greenhouse gases. However, changes in forest and vegetation covers due to wildfires and mainly urbanization resulted in a net decrease of 2.37% in CO₂ emissions.

Figure iii: Trend of GHG emissions 1994-2013

Climate change mitigation

As a party to the UNFCCC, Lebanon has made efforts to implement activities that lead to emission reduction based on its capabilities and taking into account its national circumstances. Mitigation measures are mainly achieved in the power and forestry sectors.

In 2013, mitigation measures implemented in the energy sector contributed in reducing emissions by 513,063 tonnes $CO_2eq.$, with the expansion of the solar water heaters and the replacement of incandescent lamps inducing the most significant emission reductions.

As for land use, land change and forestry, afforestation and reforestation activities were sustained and increased by the Ministry of Agriculture and leader organizations in the country such as the Association for Forest Development and Conservation and Jouzour Loubnan. In 2013, the total amount of GHG emissions that has been removed from mitigation actions in this sector to 18.996 Gg CO_2eq . in 2013.

Lebanon's transparency framework, institutional arrangements and MRV system

As part of enhancing Lebanon's readiness to implement the Paris Agreement's article 13 on transparency, several initiatives are being undertaken:

- Minister of Environment decision 99/1 which provides an incentive to the private sector to report on a voluntary basis their GHG emissions and related activity data to the Ministry of Environment. The latter is planning to undertake an assessment to determine the relevance and scalability of the initiative for better informing climate change policy in Lebanon.
- Cooperation between Ministries of Environment and Industry, which entail collection of information by requesting that basic activity data be included as part of the standard procedures followed for industries to acquire their business licenses.
- Cooperation between Ministries of Environment and Finance, which entails data request included in the online tax declaration template. A first round of data collection will be launched starting 2018 for the companies registered at the Large Taxpayer Office.
- The Lebanon Climate Act initiative, which aims to engage the private sector and non-state actors in climate action. A series of trainings have been conducted to support companies in determining their level of engagement, identifying potential partners from civil society and municipalities, and developing implementation, monitoring and reporting plan for their climate actions.
- Transparency law, which give access to information law to the public and which prescribes that all government entities publish online key documents showing performance indicators. The law is a positive step towards improving transparency and public accountability, and work for climate change transparency will benefit from this initiative.
- Management and Information System for Climate Action (MISCA), which is an online information system that tracks progress of implementation of the energy target of Lebanon's Nationally Determined Contribution. The Ministry of Environment aims at expanding the MISCA initiative to include other ministries. This would be an important move towards enhancing Lebanon's effectiveness and transparency.

Some gaps and challenges still exist to coordinate these initiatives and to enforce their efficient implementation.

Constraints and gaps, and related financial, technical and capacity needs, including a description of support needed and received

The main challenge related to the preparation process of the BUR is the absence of sustainability of the team responsible for the climate reporting processes at the Ministry of Environment. Therefore, the main need is the provision of permanent financial and administrative support to the Ministry of Environment in order to guarantee the sustainability, continuity and integrity of the information reported in the BUR. This can be ensured through the establishment of the MRV Coordinating Entity which will be responsible not only for tracking climate change activities and collecting relevant data, but also in identifying needs to strengthen climate reporting processes in Lebanon.

Other significant challenges relate to the preparation of national inventories. They include but are not limited to the centralization of data management, the development of measurement campaigns to better characterize Lebanon's energy systems and vehicle fleet, or even the undertaking of an official census on the population in Lebanon or the manure management systems.

Challenges also exist in the collection and consolidation of information related to existing mitigation actions. They are mainly related to limited availability of data, weak coordination between institutions working in climate change and the difficulty in quantifying emission reductions achieved.

Lebanon also needs to improve its institutional arrangements that would allow exhaustive and accurate reporting of support received for climate change activities. Efforts are underway to define climate finance and devise a process to establish a system for MRV of support received (including capacity-building and technology transfer) and their respective financing and linkages to NDC goals. Lebanon has attempted in the present BUR to gather readily available and trusted information, in a format that, if developed and improved, could inform the global stocktake more easily. Only information on climate related projects that have been approved by donors and whose beneficiary is the Ministry of Environment since the submission of BURI has been considered in this report and presented in tabular formats. The report also includes a table which lists the participation of representatives of Lebanon in capacity building events related to climate change since the submission of the first BUR.

I. National circumstances

1 Government structure

Lebanon's legislative body, represented by the Lebanese Parliament (128 seats), is organized into specialized committees, among which the Committee for Environment. The Environmental Protection Law (law no. 444/2002) is the overarching legal instrument for environmental protection and management in Lebanon.

The Ministry of Environment is the main national coordinator for climate change and the UNFCCC focal point. The Ministry also chairs the National Council for the Environment (NCE) which is composed of official representatives from 7 ministries (the Ministry of Environment; and the ministries of Finance, Interior and Municipalities, Agriculture, Public Works and Transport, Energy and Water, and Industry) and 7 non-public entities (Order of Physicians, Order of Engineers and Architects, The Bar Association, Association of Banks, Association of Insurance Companies, representative of Non-Governmental Organizations (NGOs), representative of the academic sector). The NCE is mandated to approve environmental policies and strategies and integrate environmental concept, including climate change issues, into national development plans.

Work on climate change in Lebanon is mandated by virtue of law 359/1994 and law 738/2006 relating to the ratification of the United Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol (KP) respectively. The Paris Agreement was signed by the Lebanese Prime Minister in April 2016 and the draft ratification law is awaiting approval by the Lebanese Parliament after having been approved by the relevant parliamentarian committees. Under the Paris Agreement, Lebanon submitted its Nationally Determined Contribution (NDC) under which the country has set a 2030 target of reducing its GHG emissions by 15% as an unconditional target and by 30% conditional to financial, technical and capacity building support.

No major legislation directly addresses climate change in Lebanon. However, a number of regulations have addressed issues that could be linked to climate change, such as the reduction of air pollution from transport (law 341/2001), the reduction of energy import by developing local energy including renewable energies (Council of Ministers, decision no. 13/2004), energy efficiency standards and labels, tax incentives on green products as well as large scale renewable energy industries (decree 167 under Law 444) and other decisions relating to the ratification of conventions such as the United Nations (UN) Convention on Biodiversity or the UN Convention to Combat Desertification.

Targets	Unconditional Target by 2030	Conditional Target by 2030
National	15% reduction of greenhouse gas emissions	30% reduction of greenhouse gas emissions
Energy	Refurbishment, replacement and extension of cor switch to natural gas	nventional power generation capacities and fuel
	15%increase in the share of renewables in meeting the power and het demand 3% reduction in power demand through energy efficiency measures	20%increase in the share of renewables in meeting the power and het demand 10% reduction in power demand through energy efficiency measures
Transport	36% stabilization of the share of annual passengers-kilometres driven using public transport	48% stabilization of the share of annual passengers-kilometres driven using public transport20% increase in the share of fuel efficient
Waste	waste management through energy recovery, equivale	vehicles in the fleet by 2030 ent to avoiding emissions from landfilling of 1,000

Table 1: Lebanon's Intended Nationally Determined Contribution

	25% recycling rate	30% recycling rate
	51% of municipal wastewater treatment	70%% of municipal wastewater treatment
	·	
Forestry	20 million trees planted	26 million trees planted
,	·	·

2 Population profile

Lebanon's population is estimated to be 6,131,254 in 2013, including foreign workers, Palestinian and Syrian displaced. Lebanon's population profile has changed drastically between 2012 and 2013 due to the increasing influx of Syrian displaced entering the country, dispersing themselves across more than 1,200 villages in Lebanon. In 2013, it is estimated that 858,641 displaced have settled in Lebanon, including Syrian nationals, Palestine Refugees from Syria and Lebanese returnees (UNHCR, 2013). Although most of the displaced Syrians are living in rented accommodations or hosted within Lebanese communities, 4,231 informal settlements have spread across the country, mainly in the Bekaa and the North Regions. The large influx of displaced has constituted a heavy burden on already fragile environmental resources and has directly impacted energy demand and consumption, solid waste and wastewater generation and management, air quality, food consumption and land use (MoE/EU/UNDP, 2014).

3 Geographic profile

Lebanon is located on the eastern basin of the Mediterranean Sea and is characterized by mostly mountainous areas constituted of the following parts:

- A narrow coastal plain composed of 2 plains, one in the north (Aakar) and one in the south (Tyre) and a succession of little narrow plains separated by rocky headlands in the center.
- The Mount Lebanon chain has an average elevation of about 2,200 m. Cut by deep canyons, and composed essentially of Jurassic thick carbonate sediments, the northern part of the chain is the higher region.
- The Anti Lebanon chain subdivided into two massives: Talaat Moussa (2,629 m) in the north and Jabal el Sheikh or the Mount Hermon (2,814 m) in the south.
- The Bekaa valley a flat basin with a length of about 120 km, located between the Mount Lebanon and the Anti Lebanon chains. Its elevation averages at 900 m, peaking at 1,000 m at its center.

Figure 1: Geographical location of Lebanon

4 Climate profile

Lebanon has a Mediterranean-type climate characterized by hot and dry summers (June to September) and cool and rainy winters (December to mid-March). Spring and autumn are warm and pleasant. The average annual temperature is 15°C.

Along the coast, summers are hot and humid with temperatures crossing 35°C in August. But due to the moderating effect of the sea, the daily temperature range is narrower than it is inland. January is the coldest month, with temperatures around 5 to 10°C. The mean annual rainfall on the coast ranges between 700 and 1,000 mm (Asmar, 2011). About 70% of the average rainfall in the country falls between November and March and is concentrated during only a few days of the rainy season, falling in heavy cloudbursts or violent storms. Rainfall in inland Lebanon is higher with snow in the mountains (1,600 mm according to Asmar, 2011) than that along the coast.

5 Economic profile

Lebanon's economy is relatively diversified, with four sectors – trade, manufacturing, construction and finance – representing around half of the economy, and a Gross Domestic Product (GDP) of USD 49.9 billion in 2014 and a GDP per capita of USD 18,052. Lebanon's growth track record is volatile. During the period 2006-2010, real GDP growth averaged 7.7% before falling to 1.9% in 2011-2015 as a result of geopolitical developments.

Lebanon's economy suffers from a number of structural weaknesses, including weak basic infrastructure (e.g., roads, water, electricity and telecommunications). Conflicts over the years have damaged infrastructure, which suffers from underinvestment and inefficient management. Accounting for less than 2% of GDP, the government's capital expenditure is very low because it is crowded out by large and rising debt-servicing and wage expenditures. The economy continues to face heavy shortages of electricity because of the lack of investment in new capacity and an inefficient energy subsidy system.

6 Energy

In Lebanon, electricity is generated from thermal and hydroelectric power plants, with a rate of 91% and 9% respectively in 2013 (MoEW, 2016a) (hydropower averaged at 6.54% from 2009 to 2015). Almost all of Lebanon's primary energy requirements are imported, since the country does not have any indigenous energy sources. Out of the 7 thermal power plants in Lebanon, 3 operate on heavy fuel oil and 4 on gas diesel oil. Currently, there is no supply of natural gas to Lebanon although a gas pipeline has been connected and a natural gas station has been constructed at the Tripoli installations. Recent studies and surveys conducted in the deep offshore Exclusive Economic Zones have shown very promising seismic conditions for hydrocarbon deposits, mainly natural gas with some oil. As a result, Lebanon had already started the development phase for the exploration and production era which is expected to have a positive economic impact on the country.

Due to load shedding, technical losses and the aging of power plants, Lebanon's electricity sector suffers from frequent shortages from the difference between supply and demand. In 2013, Electricité du Liban has supplied 11,728 GWh of electricity while the demand was estimated at 19,876 GWh, giving space to the proliferation of privately owned generators. While some of these generators are located in industrial facilities or in commercial institutions, most of them are spread within neighbourhoods, supplying electricity to residential buildings and small retailers at a monthly fixed subscription fee.

To overcome the problems faced by the energy sector, the Ministry of Energy and Water (MoEW) published the Energy Policy Paper in 2010, which proposed a series of actions related to generation, transmission, and distribution of electricity including the generation of 12% of renewable energy by 2020. The Policy Paper was followed by the 2 National Energy Efficiency Action Plans NEEAP (for

2011-2015 and 2016-2020) in addition to the National Renewable Energy Action Plan NREAP for 2016-2020 setting up a series of activities to implement the targets set by the Policy Paper (MoEW/LCEC, 2011; MoEW/LCEC, 2016a; MoEW/LCEC, 2016b).

In 2015, and as part of Lebanon's Nationally Determined Contribution (NDC), sectoral targets for 2020 were set for the energy sector: 15% renewable energy and 3% reduction in demand from energy efficiency as an unconditionally target and 20% renewable energy with 10% reduction in demand as a target conditional to technical, financial and capacity building support.

In terms of renewable energy in Lebanon, its share in energy production is slowly but steadily increasing. The main contributor to the renewable energy mix is hydropower, producing between 6% and 11% of the country's total energy production depending on the precipitation levels in each year. The potential for hydroelectric power in Lebanon is significant, conditional to the rehabilitation and upgrade of existing units, the installation of new hydro units on the main rivers and streams and the development of micro-hydro potential on small streams and non-river sources.

Lebanon has an abundant solar resource with high solar irradiance levels, providing a net feasible potential energy production of 6,780 GWh/year. Photovoltaic (PV) power systems are currently being used in Lebanon mostly at the micro level and for specific applications like street lighting, small decentralised residential installations and other municipal use. In 2013, a 1 MW grid connected PV farm has been installed over Beirut River as part of the MoEW/LCEC Beirut River Solar Snake project, generating up to 1,665 MWh/year as per the initial simulations. In addition, more than 700 small-scale PV projects and 8,000 public street lighting systems are installed in Lebanon by the government, local municipalities and internationally funded projects such as the Country Energy Efficiency and Renewable Energy Demonstration Project (CEDRO) and UNDP Small Decentralized Renewable Energy Power Generation Project (DREG) projects managed by the United Nations Development Programme (UNDP) (MoEW/LCEC; 2016b).

Solar water heating technology is already a mature technology in Lebanon and its market is witnessing a steady growth. In 2013 around 400,000 m^2 of solar water heaters were installed in the country, exceeding the 190,000 m^2 target set initially by the first NEEAP 2011-2015 (MoEW/LCEC; 2016b).

The country has a significant wind potential of 12,139 GWh/year, however no wind farm has been commissioned yet in Lebanon (MoEW/LCEC, 2016b). The licensing of 3 farms with a total capacity of ca. 200 MW has started in 2017, with energy production expected by 2020.

As an incentive for increasing the share of decentralized renewable energy, net metering was launched by the Electricité du Liban to boost the development of distributed renewable energy generation. A number of private consumers are benefiting from the net metering contract. In addition, a financing mechanism known as National Energy Efficiency and Renewable Energy Action (NEEREA) has been established by the Central Bank of Lebanon and the LCEC in 2012 in which subsidized loans are given to financing new and existing energy efficiency, renewable energy and green building projects to private sector entities. NEEREA has benefited from a USD 15 million grant from the European Union in its start-up phase of 2011-2014 and has helped to fund more than 225 projects with a total amount of loans of USD 240 Million by mid-2015 (MoEW/LCEC, 2016a).

7 Transport

Land transport in Lebanon consists mainly of road-motorized vehicles, since appropriate infrastructure for non-motorized vehicles does not exist (i.e. bicycle lanes, safe storage, and convenient and affordable bike rentals) and the entire rail network is currently derelict. Road-motorized vehicles rely mainly on personal-owned passenger cars. The 2013 vehicle fleet database shows a total of 1.64 million registered vehicles, mainly constituted of passenger cars.

Figure 2: The 2013 vehicle fleet distribution

Mass transport consists of public and private buses, mini-vans as well as exclusive and shared-ride taxis, all operating on an ad-hoc basis without any coordination, resulting in very poor occupancy rates (MoE/URC/GEF, 2012). The mass transport market share in Lebanon is weak due to the impracticality, lack of safety and restricted reach of public transportation compared to the attractiveness of owning a private automobile, an alternative that is still promoted in Lebanon through bank loan facilities and affordable new and used car imports.

The driving patterns in Lebanon are characterized by a relatively low driving range with a high rate of congestion and frequent stops at short time intervals. It is estimated that 50% of trips have a distance lower than 5 km, 25% of stops are below 2 seconds and the total stop time per trip corresponds to more than 15% of travel time (Mansour, 2011). Moreover, observed results reflect the continuous stop-and-go driving patterns, therefore resulting in the inefficient operation of internal combustion engines, and a high rate of fuel consumption and pollutant emissions as a result.

The main road transport legislations are law 341 (6/08/2001) and decree no. 7858/2002, banning the use of private and public cars of diesel engines starting from 15/06/2002, and the use of public buses of 16 to 24 passengers of diesel engines starting from 31/10/2002. In 2014, the Ministry of Public Works and Transport (MoPWT) presented to the Council of Ministers the master plan to revitalize the land public transport for passengers. It encloses a set of actions to be implemented on the short and medium terms, shifting the passenger transport demand to mass transit systems.

In terms of aviation activities, Middle East Airlines is the national air carrier of Lebanon and Beirut International Airport is the only operational commercial airport in the country. Lebanon doesn't have any scheduled domestic flights due to the small surface area of the country.

As for maritime activities, Lebanon has five legal harbors: Beirut, Tripoli, Saida, Tyre and Jounieh. The port of Beirut hosts around 78% of the incoming ships to Lebanon and the port of Tripoli hosts around 16% (CAS, 2014). The number of yearly incoming ships and oil tankers to Beirut port ranges between 2,000 and 2,400 ships, with a total capacity around 700,000 containers Total Equivalent Unit per year (Beirut port statistics, 2014). As for Tripoli, its port hosts around 350 to 450 yearly incoming container and cargo ships, and 50 to 90 oil tankers (Tripoli port statistics, 2014).

The fisheries host a fleet of around 2,860 boats with a yearly catch of 9,000 tonnes. About 98% of the fleet is constituted of open woody boats with length less than 12 m (EastMed, 2012). The fleet is old (e.g. average age of 17 years at the port of Tyre) and spread over 44 local harbors, most of which requiring major infrastructure maintenance intervention.

8 Industry

The industrial sector in Lebanon remains an important pillar of the economy contributing to roughly 7.2% of the country's GDP in 2011 although this rate was much higher in the nineties (e.g., estimated

at 12.5% in 1997). The Lebanese industrial establishments are considered as new industries, with 61.7% established between 1990 and 2007 (MoI/ALI/UNIDO, 2010).

According to the Ministry of Industry (MoI) latest census, conducted in 2007 and published in 2010, the total industrial output for 4,033 industrial establishments (establishments employing more than 5 workers) reached USD 6.8 billion. As such, the industrial sector productivity has significantly increased compared to 1998, whereby the industrial output was equivalent to USD 3.1 billion (for 5,082 industrial establishments employing more than 4 workers). This significant increase in productivity of the industrial sector is reflected by the fact that the average value of output per enterprise has increased to USD 1,686,162 in 2007 compared to USD 542,326 in 1998 (MoI/ALI/UNIDO, 2010). The industrial census has not been updated since 2007.

The key industrial sectors in Lebanon are food products and beverages, fabricated metal products and other non-metallic mineral products. These constitute 50% of the economic activity of the industries in the country. Other sectors include the chemical sector, furniture manufacturing and electrical machinery manufacturing (Figure 3) (Mol/ALI/UNIDO, 2010).

Figure 3: Distribution of industrial establishments by economic activity in 2007 in Lebanon

The industrial sector hosts large units in rural and remote areas, mainly manufacturing activities using large surface areas for their operations. The largest industrial establishments are located out of the Governorate of Beirut and Mount Lebanon, especially in North Lebanon and Bekaa.

According to the Mol, around 75% of the industries were mostly established prior to the enactment of the decree 8018/2002 "Permitting of Establishments". This issue has major consequences on the alignment of industrial enterprises with recent permitting systems, including the environmental management requirements (EFL, 2013). The MoE is responsible for the environmental compliance of industrial establishments through the implementation of the Environmental Compliance Decree 8471/2012 and its related decisions (202/1, 203/1 & 271/1 - 2013). Depending on the size and type

of each industrial establishment, water and air pollution abatement measures have to be undertaken to comply with the decree.

9 Waste and wastewater

Solid waste management

Throughout the last 20 years, solid waste management in Lebanon has witnessed significant technical, legal and institutional changes, in an attempt to organize the sector. However, to date, no clear well-defined strategy has been agreed in the country. National consensus has not been reached yet on a specific solid waste management strategy despite the various attempts and efforts put in place throughout the years, especially after the waste crisis the country is witnessing since July 2015, after the closure of the main landfill of the country.

Municipal Solid Waste (MSW) generated in Lebanon is either disposed of in managed landfills (mainly in urban agglomerations) or disposed of in open dumpsites (mainly in rural areas) where open burning occurs. Hazardous waste, that are mainly produced from industrial activities is disposed of with MSW in landfills and open dumps or stored on location. In rare cases, it is exported to be treated abroad according to the Basel Convention.

It is estimated that around 17% of the waste generated is recycled or composted. Estimates for the amount recycled may understate the actual importance of recycling since this activity is conducted in part by the «informal» sector whose activities are, by definition, difficult to quantify. Informal and semi-formal private sector entities, which collect recyclable materials from municipalities, treatment facilities or directly from consumers, have created a market for recycling, providing livelihood for thousands of people. Although, the extent of this recycling activity varies according to market conditions, the draft Law on integrated solid waste management clearly aims at reducing the quantity of wastes to be disposed by promoting waste minimization, source separation, recycling and energy recovery (Sweepnet, 2014).

There are 4 main landfills in Lebanon that have been receiving since 1998 around 55% of the total generated solid waste in Lebanon. Waste sorting in dedicated facilities precede most of the landfilling activities.

The Naameh Landfill was established in 1997 as part of the emergency plan for solid waste management for the GBA and receives the majority of the waste generated in Lebanon. The Landfill received around 2,500 tonnes per day and is complemented by 2 sorting facilities and a composting facility. The landfill is equipped with a 7MW power plant with 7 containerized generating sets and is designed to generate energy for own use at the facility. After 18 years of operation and 12 million tons of waste, the site was closed on 17 July 2015, leading to a major waste crisis in the country.

The Zahle landfill was opened in 2002 in the Bekaa valley and was designed and built to receive 150 tonnes per day, serving 18 out of 33 municipalities in the Caza of Zahle. The landfill is complemented by a sorting facility since 2008 but no composting activities are taking place. Around 160 tonnes of MSW are landfilled per day. Methane generation is insignificant and is flared.

The Tripoli controlled dumpsite is located on the Tripoli seafront and serves the city of Tripoli as well as the neighboring towns with an estimated population of 400,000 inhabitants. The managed dumpsite, which receives around 380 tonnes of waste, is annexed by a sorting facility however not operational yet.

The Saida waste facility and landfill has been operational since 2013 to treat the MSW generated by the city of Saida and its surrounding areas. The facility includes a sorting facility and anaerobic

digestion plant with a treatment capacity of 300 tons/day. Currently around 200 tonnes are landfilled per day and 1.6 megawatts are being produced for internal use.

A number of small and medium sized sorting and composting facilities have also been implemented at a municipal level with treatment capacity ranging from 5 to 250 tonnes/day. Funding has been secured through European Commission grants, United States Agency for International Development (USAID), as well as some Non-Governmental Organizations (NGOs) like the Young Men's Christian Association, Pontifical Mission, and Creative Associates International Inc. The execution of the facilities has been undertaken by the private sector, contracted through the concerned municipalities while the operation of these facilities is carried out by the municipalities themselves. However, the projects have known limited success due to lack of financing of the operation and maintenance services and lack of technical capabilities of the municipalities to ensure efficient solid waste management.

MSW treatment and disposal facility ¹	Treatment / design capacity (t/d) ²	Status		
Hbaline (Jbeil) Sorting and Composting Facility	100			
Khiam (South Leb.) Sorting and Composting Facility	25	-		
Qabrikha (South Leb.) Sorting and Composting Facility	-			
KherbitSilm (South Leb.) Sorting and Composting Facility				
Union of Municipalities of Tyre / Ain Baal (South Leb.) Sorting and Composting Facility	Operational (based on			
Ansar / Nabatieh (South Leb.) Sorting and Composting Facility	10	contract)		
Union of Municipalities of Minieh (Akkar) Sorting and Composting Facility	70			
Michmich (Akkar) Sorting and Composting Facility	10	-		
Union of Municipalities of Baalbeck-Hermel Sorting and Composting Facility	200	-		
Tripoli (Union of Municipalities of Al Fayhaa) Sorting Facility	420	Constructed		
ChoufSwaijani – Kahlouneyye (Chouf) Sorting and Composting Facility	30	operational		
Union of Municipalities of Nabatieh – Chquif (Kfour) Sorting and Composting Facility	250	(awaiting management contract)		
Taibeh (Nabatieh) – Sorting and Composting	10			
Qlaiaa (Nabatieh) – Sorting and Composting	5.0	_		
Kfarsir (Nabatieh) – Sorting	7.5	Operational		
Aitaroun (Bent Jbeil) – Sorting and Composting	15.0			
Chaqra (Bent Jbeil) – Sorting and Composting	5.0			
Bent Jbeil (Bent Jbeil) – Sorting and Composting	20.0			

Table 2: OMSAR-implemented MSW Treatment Facilities (outside GBA and Mount Lebanon)

1 Composting capacities of the facilities are estimated to be approximately 50% of their respective sorting capacities

2 Capacities for operational facilities indicate the treatment capacities. Capacities for under-construction and constructed – non-operational facilities indicate the initial design capacity.

Source | Sweepnet, 2014; MoE/UNDP/ECODIT, 2011

Open dumping and open burning of MSW are still practiced in Lebanon. Around 670 dumpsites have been reported in 2010 (MoE/UNDP/ELARD, 2011), out of which 504 are MSW dumpsites and the rest is construction and demolition dumpsites. Industrial solid waste is still dumped with MSW since no industrial waste treatment facilities exist in the country.

Incineration of MSW is not practiced in Lebanon. Only a small quantity of health care waste is being incinerated by hospitals. Currently, and after the enactment of decree 8006 in 2002 on the proper management of the health care waste in Lebanon, several hospitals started managing their waste mainly through autoclaving. However, although no license for medical waste incinerators has been issued after 2004, some hospitals are still using this practice. It is estimated that in 2013, 57 tonnes of health care waste have been incinerated. In addition, an incinerator at a university animal care facility has been incinerating an estimated 37 tonnes/year of animal carcasses since 2004 (MoE/UNEP/GEF, 2017).

Wastewater generation and management

Lebanon generates around 248 million m³ of wastewater per year, most of which is discharged without prior treatment. Although 66% of households are estimated to be connected to a wastewater network, only 8% of wastewater is being currently treated in small scale rural waste water treatment plants (MoEW, 2010a; World Bank, 2011).

Wastewater is discharged directly in the sea and surface water bodies, in open sewers or in septic tanks that are still widely adopted in rural areas. Coastal waters receive more than 60% of the total sewage load of Lebanon, from at least 53 sewage outfalls, 16 of which lie in the Beirut area (MoE/UNDP/Ecodit,2011). Industrial wastewater is rarely treated at the industry level prior to its discharge in the environment or in the public sewer network.

The government of Lebanon, through the Ministry of Energy and Water (MoEW) developed the National Water Sector Strategy in 2012, which aims at increasing the wastewater collection, treatment and reuse rates by 2020. Due to the regulatory, institutional and financial barriers, the implementation of the plan is being delayed.

Some wastewater treatment plants were built in recent years through grants and/or loans, however only few of them are efficiently operating due to lack of financing of operation and maintenance services and lack of technical capabilities of the municipalities or water establishments to ensure proper wastewater treatment.

The heavy-flow influx of Syrian displaced to the Lebanese territories since the Syrian conflict has also had its implications on solid waste and wastewater generation and management. It has been estimated that the incremental annual waste generated by displaced is equivalent to 15.7% of the solid waste generated by Lebanese citizens prior to the crisis. In addition, national wastewater generation rates have increased between 8 and 14% with the Bekaa having the highest share of displaced population. Most of this incremental wastewater is being discharged of without treatment in the Litani River and 10% into open lands (MoE/EU/UNDP, 2014).

10 Agriculture

Agriculture is a vital part of the Lebanese economy and its social and cultural heritage. Even though the sector's share of the GDP, is relatively low (4% in 2011), agriculture employs 20-30% of the active work force and constitutes 17% of the total exports (MoA, 2010a). In rural areas, however, agriculture is reported to contribute up to 80% of the local GDP and represents the major incomeearning and employment opportunity (Verner et al.; 2013). In comparison with Lebanon's neighbors, agriculture production in the country is characterized by a higher value added per square kilometer, reflecting a higher intensity of production and greater focus on higher value fruits and vegetables (FAO, 2011a). Compared to 1970 when agriculture's share of the GDP reached 9% agricultural contribution to the GDP has been steadily decreasing. There are many reasons for this decline including the post-war economic crisis, urban encroachment that changed the rural landscape of the country, government economic policies favoring other sectors, emigration of young generation of farmers and the switch from farming to higher-paid jobs, and climate change with its concomitant effect on crops, pastures, and water resources.

According to FAOSTAT (FAO, 2011a) the total agricultural area is estimated at 638,000 ha (62% of total surface area). As indicated in Figure 4, pastures and meadows constitute approximately 39% of the total area, permanent crops 12%, arable land 11%, and forests 13% of the total surface area of Lebanon.

Figure 4: Agricultural land use in Lebanon (% of total agriculture area)

Source | Adapted from FAOSTAT, 2011a

According to the Ministry of Agriculture (MoA) 2010 census, the utilized agricultural area was approximately 231,000 ha, which is lower by 6% in comparison with the value from previous census in 1998. Of these, 106,272 ha were dedicated for seasonal crops (grains, vegetables, legumes, root crops, industrial crops, and forages) including 3,800 ha of greenhouse crops and 125,928 ha for permanent crops (olives, fruit trees, citrus, and grapes).

Figure 5: Agricultural production in Lebanon

Source | MoA, 2010b

Of the total utilized agricultural land, approximately half is irrigated, and increased by 8% compared to irrigated areas in 1998. Flood and furrow irrigation comprise 50% of irrigated land, while approximately 30% is through drip and 20% through sprinkler irrigation.

Agricultural production in Lebanon is diverse reflecting a Mediterranean climate with variable temperature and precipitation regimes, and distributed in the following regions of the country:

- 1. The Bekaa: Once regarded as the 'bread basket of the Roman Empire", the Bekaa valley is the most important production area and accounts for the highest percentage of seasonal crops (60%) as in cereals, potatoes, and vegetables, and in stone fruits, and grapevine. It also contains the highest percentage of cattle population (43%), sheep (72%), goats (51%) and poultry layers (60%).
- 2. The north and Akkar Plain: Olives, cereals, potatoes, vegetables, cattle and poultry broilers production.
- 3. South and Nabatieh: Olives, cereals, vegetables, and tobacco production.
- 4. Mount Lebanon: Fruits, vegetables, poultry broilers, and swine production.

In addition, the geographical coastal strip along the Mediterranean coast from the North of the country to the South is home for intensive vegetable greenhouse production, citrus fruits, and bananas.

Crop production

Lebanon's main agricultural crops are fruits, vegetables, olives, cereals, tubers, and legume crops. Pressure on the land base has led to a decline in cereal production in favor of high-value crops such as vegetables. Lebanon is self-sufficient in fruits and vegetables, although competition from open markets is leading to import of these commodities as well.

The most important cereals cultivated are wheat and barley, with some production of forage crops such as alfalfa, vetch, corn, oats, and sorghum. Most of the barley grown in the arid parts of Bekaa

(Hermel and El Qaa) is left as pasture for grazing animals. It is anticipated that forage crop production would increase after recent incentives introduced by the MoA to encourage milk and forage production by farmers with small animal holdings.

In 2010, wheat, barley, and potato production decreased due to a combination of drought and reduction in the areas planted. Although wheat and barley production recovered in 2011 and 2012, potato crop production remained at least 80% less compared with 2005, mainly due to the shrinkage in hectares planted (20,000 ha in 2005 vs. 12,000 ha in 2012). Also, imports from Saudi Arabia and Egypt rendered potato farming, once a profitable and prominent enterprise, vulnerable to open markets.

Fertilizer use

Statistics on fertilizer consumption in Lebanon are sporadic and contradictory. The Lebanese customs provide extensive data about imports but these could not be corroborated from the major agricultural importing companies. The amount of fertilizers used in Lebanon has been decreasing since 1994: approximately 122,000 tonnes of total nitrogenous fertilizers were used in 1994 (average of 31,000 tonnes of Nitrogen (N)), while in 2006 total nitrogenous fertilizers used were approximately 50,000 tonnes (average of 9,500 tonnes N). However, fertilizer consumption increased in recent years to reach 85,000 tonnes (19,000 tonnes of N) in 2013. Most of the nitrogenous fertilizers used were Nitrogen-Phosphorus-Potassium (NPK) fertilizer, (17-17-17; and 15-15-15, and other combinations), Ammonium Sulphate, Ammonium Nitrate and Urea. Application rates of nitrogen fertilizers far exceed the recommended agronomic rates (Al-Hassan, 2011). For example, potato growers apply on average 590 kg N/ha while the suggested agronomic rate is 220 kg N/ha. For vegetables, growers apply the average of 900 kg N/ha while the agronomic rate is 500 kg N/ha. Unfortunately, soil testing for soil nutrient content is not widely practiced and growers apply nitrogen rates based on experience or on the recommendation of agents from fertilizer distributors.

Animal production

The livestock sector contributes to around 30% of the total value of production (FAO, 2011a). Although animal production is considered secondary with respect to crop production, Lebanon's poultry and dairy sectors both hold importance in terms of production and quality. The poultry sector is the only agriculture sector that satisfies domestic demand and is dominated by few companies utilizing closed systems producing quality broilers and egg products. Cattle are mainly raised for milk production with the majority of stocks raised in large farms as well as small-sized holdings (FAO, 2011b). Beef production is limited and imported live animals (in addition to imported chilled and frozen cuts) provide a major source for local consumption. The size of sheep and goat herds has fluctuated since 1994 but decreased in recent years mainly due to decrease in the number of shepherds and due to competition from imported meat from Australia, Turkey and Syria. In addition, the crisis in Syria has caused the influx of goat and sheep herders to Lebanese rangelands with their flocks but this is hard to quantify. Swine production has decreased steadily since 1994 due to a shift in consumer preferences towards poultry, mutton and beef, and due to fear from the swine flu.

11 Land use, land use change and forestry

In Lebanon, the lack of land management plans and/or inadequate urban regulations has strongly affected the natural and built environment. This has facilitated unplanned urban sprawl at the expense of natural landscapes). The construction of new roads and highways in mountain areas has also affected landforms, vegetation cover, and ecosystems.

Several initiatives have been conducted to document and map land cover attributes in Lebanon. Accordingly, the first land cover map was produced in 1961 by the Lebanese army in partnership with the French "Institut Géographique National". Later in 2002, a land use/ land cover map of Lebanon

was produced by the Ministry of Environment in cooperation with the National Center for Remote Sensing of the National Council for Scientific Research (NCSR) which involved the use of satellite remote sensing data acquired in 1998. The final map disaggregated land use and land cover into seven main categories and 23 subcategories. The NCSR is currently aiming at completing the Land Cover / Land Use map using remote sensing data acquired in 2013.

National forest resources assessments for Lebanon were conducted in 2005, 2010 and 2015 by the Ministry of Agriculture with the assistance of the Food and Agriculture Organization. The latest results showed that forests cover 13.2% of the total area of the country. In addition, 10.2% of the Lebanese territory is covered by other wooded land (MoA/FAO, 2015).

Increasingly, Lebanon's forests, which include valuable broad-leaved trees, conifer forests and evergreen trees that cover the mountains in patches, are exposed to degradation due to quarries, urbanization, pests and diseases, fires, wars, human neglect, improper management, outdated laws, and poor law enforcement. Like other Euro-Mediterranean countries, fires have been especially damaging Lebanon's forests in recent years, representing one of the most important elements that destroy Lebanon's natural resources. Moreover, the absence of a national forest management strategy and the lack of human and technical resources contribute to the degradation of Lebanon's forests.

Overall, the lack of land management in Lebanon is the cause for the over-exploitation and degradation of lands in many areas. It is estimated that 84% of the Lebanese territory still does not have adequate master plans, which has allowed for a lot of chaos when it comes to construction or any activities that change land cover and land use. It is estimated that there are about 1,278 quarries in Lebanon covering an area of 5,267 ha (MoE, 2012). Most recently, an indicative research study conducted showed that the largest area of artificialization on the coastal zone of Lebanon between 1998 and 2010 affected grasslands followed by forests and agricultural lands, consecutively (MoE/UNEP, 2013). Furthermore, it was found that wetlands decreased by 47%, grassland by 27%, and forests by 9%. Further investigation showed that most of artificialization in grassland affected moderately to highly dense vegetation, while most of the artificialization in forested lands affected shrublands.

In an attempt to tackle deforestation and to preserve what is left of natural areas, Lebanon has created until the year 2015, a total of 15 nature reserves, 3 biosphere reserves, 16 protected forests, 18 protected natural sites/landscapes, 4 Ramsar sites, 5 world heritage sites, and 15 important bird areas (MoE/UNDP/ECODIT, 2011). The MoA developed a National Forest Plan (NFP) and pursue efforts to update Lebanon's forest law to protect better the remaining forest cover and promote the increase in forest cover by 40 million trees by 2020. MoE has been involved in developing a forest fire law complementing Lebanon's National strategy for forest fire management.

In addition, a number of projects such as the GEF funded "Smart Adaptation of Forest Landscapes in Mountain Areas" project and the adaptation fund "Climate Smart Agriculture: Enhancing Adaptive Capacity of the Rural Communities in Lebanon" project are aiming at increasing forest areas in Lebanon and limit degradation losses. Also, Lebanon has set a target towards land neutrality by 2030 under the United Nations Convention to Combat Desertification.

The influx of Syrian displaced has also had impacts on land resources through the expansion of Informal Tented Settlement (ITS) and their distribution in relation to agricultural areas, environmentally sensitive areas and vulnerable towns.

II. The national GHG inventory in 2013

The inventory of greenhouse gas emissions in this report covers the year 2013, with a recalculated time series for 1994-2013. The inventory was prepared based on IPCC Guidelines and Guidance used for the Inventory preparation, the 1996 IPCC Revised Guidelines and elements from the IPCC Good Practice Guidances 2000 and 2003 (IPCC GPG 2000 and IPCC GPG-LULUCF 2003) in line with Decisions 17/CP.8 and 2/CP.17. Emissions of Carbon Dioxide (CO_2), Methane (CH_4), Nitrous Oxide (N_2O) were estimated. The UNFCCC Non-Annex I greenhouse gas inventory system, version 1.3.2. was used for the computation exercise.

In 2013, Lebanon emitted 26,285 Gg CO₂eq. with the most significant greenhouse gas being carbon dioxide, primarily produced from the burning of fossil fuels. The main contributor to greenhouse gas emissions is the energy sector (including transport) with 79% of GHG emissions, followed by industrial processes (10%) and waste sector (7%). CO₂ removals from the land use, land use change and forestry category amounted to 3,518.80 Gg CO₂, bringing Lebanon's net emissions down to 22,766 Gg CO₂eq.

Figure 6: Lebanon's national greenhouse gas inventory by category in 2013

Figure 7: Lebanon's national greenhouse gas inventory by gas in 2013

Table 3: Lebanon's GHG emissions and removals for 2013 per gas and category

Greenhouse gas source and sink categories	CO ₂ emissions	CO ₂ removals	CH ₄	CH₄	N ₂ O	N ₂ O	Total
	Gg	Gg	Gg	Gg CO2eq.	Gg	Gg CO2eq.	Gg COpeq.
Total national emissions and removals	23,246.21	-3,518.80	96.68	2,030.36	3.25	1,008.53	26,284.69
1 Energy	20.551.07		2.12	44.47	0.58	179.56	20,775.10
Energy industries	7,367.39		0.297	6.25	0.06	18.44	7,392.08
Manufacturing industries and construction	4,403.84		0.106	2.23	0.03	9.89	4,415.96
Transport	5,987.93		1.273	26.74	0.46	143.69	6,158.35
Other sectors	2,791.91		0.441	9.26	0.02	7.55	2,808.72
Fugitive emissions from fuels	NO		NO	NO			NO
2 Industrial processes	2,545.42						2,545.42
Mineral products	2,545.42						2,545.42
Chemical industry	NE		NE		NE		NE
Metal production	NO		NO		NO		NO
Other production	NA		NA		NA		NA
Production of halocarbons and sulphur							NO
Consumption of halocarbons and sulphur							NE
Other	NO		NO		NO		NO
3 Solvent and other product use	NE				NE		NE
4 Agriculture			14.55	305.55	2.20	682.00	987.55
Enteric fermentation			12.64	265.44			265.44
Manure management			1.91	40.11	0.55	170.50	210.61
Rice cultivation			NO	NO			
Agricultural soils					1.65	511.50	511.50
Prescribed burning of savannas			NO	NO	NO	NO	NO
Field burning of agricultural residues			NO	NO	NO	NO	NO
Other			NO	NO	NO	NO	NO
5 Land use, land use change and	149.67	-3,518.80	0.01	0.23	0.0001	0.04	149.95
forestry							
biomass stocks							
Forest and grassland conversion							
Abandonment of managed lands							
CO ₂ emissions and removals from soil							
6 Waste	0.05		80.00	1,680.11	0.47	146.51	1,826.67
Solid waste disposal on land			60.91	1,279.14		0.00	1,279.14
Wastewater handling			19.09	400.97	0.47	146.51	547.48
Waste incineration	0.05						0.05

NA: not applicable – NE: not estimated – NO: not occurring Numbers may reflect rounding.

To estimate the GHG emissions, tier 1 methods from the IPCC guidelines were mostly applied with default emission parameters, with activity data being derived from national sources, international organizations and other literature as identified in each sector (Table 4). Proxy data, interpolations, extrapolations and estimations based on expert judgments were used in the cases where data was unavailable.

Tier 2 methods were used to estimate emissions from cement manufacturing, road transport while approach 3 was adopted for the representation of land use areas in some subcategories of Land Use, Land Use Change and Forestry (LULUCF).

In order to allow the aggregation and total overview of national emissions, emission of CH_4 and N_2O were converted to CO_2 equivalent using the IPCC second assessment report's Global Warming Potential (GWP) values based on the effects of greenhouse gases over a 100-year time horizon ($N_2O = 310$, $CH_4 = 21$).

Activity data	Main sources of data					
Energy (including	Ministry of Energy and Water					
transport)	Ministry of Public Works and Transport					
	International Energy Agency					
	Directorate General of Civil Aviation					
	Ministry of Interior and Municipalities/Traffic, Truck and Vehicle					
	Management Authority					
	Fuel importers					
Industrial processes	Industrial establishments					
	Ministry of Economy and Trade					
	Ministry of Agriculture					
	Ministry of Energy and Water					
	Industries' syndicates					
Agriculture	Ministry of Agriculture					
	Directorate General of Customs					
	Food and Agriculture Organization					
	Lebanese syndicate of cattle importers					
	Surveys and personal communications					
Land use, land use	e Ministry of Agriculture					
change and forestry	Food and Agriculture Organization					
	Satellite imageries					
	Scientific publications					
	Surveys and personal communications					
Waste	Ministry of Environment					
	Central Administration of Statistics					
	Council for Development and Reconstruction					
	Waste contractors					
	Scientific publications					
	Local NGOs					

Table 4: Sources of activity data

1 The GHG inventory preparation process

The Ministry of Environment is the institution responsible for the preparation of the GHG inventories, as part of the BURs and National Communications. The preparation of the GHG inventory is an integral part of the BURII project, which is funded through the Global Environment Facility's (GEF) enabling activity (USD 352,000) and managed by the UNDP in Lebanon. The GoL through the MoE provides in kind support for the project (USD
50,000). The overall coordination of the project was handled by the climate change office at the MoE, which works under the Service of Environmental Technology.

The GHG inventory and report were compiled and drafted by the climate change office at the Ministry of Environment. The recruitment of local consultants was undertaken for the preparation of LULUCF and transport GHG inventories. Intensive stakeholders and key data holders consultations are conducted during the process, building on existing institutional arrangements.

Figure 8: GHG Inventory preparation process

2 Breakdown of emissions by IPCC sector

2.1 Energy

Methodology

According to the IPCC guidelines, the source category "Energy" covers all combustion sources of CO_2 , CH_4 and N_2O emissions (1A) and fugitive emissions associated with the production, transport and distribution of fossil fuels (1B). Since no oil production activities occur in the country, therefore they are reported as not occurring (NO) in the inventory reporting tables.

Fuel combustion activities (1A) are divided in two main categories, on the basis of the characteristics of the methodology applied for the calculation of emissions:

- Stationary combustion, including energy industries, manufacturing industries and construction and other sectors (agriculture, residential and commercial / institutional sectors and agriculture/forestry/fisheries) (Table 5)
- Transport, including domestic civil aviation, road transport, and domestic navigation (Table 6)

Reporting categories	Description	Remarks	Methodology
Energy industries	Emissions from combustion of gas/diesel oil, heavy fuel oil and lubricants for electricity generation from the 7 power plants.	Lubricants store 50% of their carbon content and only emit the remaining 50%.	Emissions are calculated based on the tier 1 methodology and disaggregated by power plant.
Manufacturing	Emissions from combustion of gas/diesel oil, heavy fuel oil, petroleum coke and LPG for electricity or heat generation for own use in industries.	Gas/diesel oil is considered to be used mainly for electricity production within the industrial facilities (generators).	Emissions are calculated based on the tier 1 methodology.
industries and construction		Fuel consumed by neighborhood generators is considered under this category.	
		Petroleum coke is only used by cement industries.	
Commercial and institutional sector	Emissions from combustion of gas/diesel oil for electricity generation and space heating and LPG for cooking activities in commercial and institutional buildings.	Gas/diesel oil is considered to be used for electricity production from generators.	Emissions are calculated based on the tier 1 methodology.
Residential sector	Emissions from combustion of gas/diesel oil, LPG, and biomass fuel for space heating and cooking activities.		Emissions are calculated based on the tier 1 methodology.
Agriculture, forestry and fisheries	Emissions from combustion of diesel oil for stationary and mobile activities related to in agriculture, forestry and fishing.		Emissions are calculated based on the tier 1 methodology.

Table 5: Reporting categories under stationary combustion

Reporting categories	Description	Remarks	Methodology	
Aviation	Military helicopters; civil, commercial aircrafts; and private jet- and propeller- type aircrafts.	Emissions from military aircrafts are not calculated due to the confidentiality of activity data for military case.	Civil, private and commercial aircrafts emissions are calculated based on the tier 1 methodology.	
Maritime transport	Domestic navigation between local ports, and international navigation.	Emissions from military navigation are not calculated due to the unavailability of activity data for military case. Emissions from fishing are not reported under transport, but rather under the agriculture/forestry/fisheries category of the energy sector.	Emissions from international navigation are calculated based on the tier 1 methodology.	
Road transport vehicles	On-road vehicle technologies rely on gasoline and gas/diesel internal combustion engines. The fleet encompasses motorcycles, passenger cars, vans, buses and trucks.	Road transport is the only mobility mean considered under land transport as the entire rail network is derelict.	Emissions are estimated using the tier 2 methodology based on the number of vehicles per category and their activity in terms of distance and/or fuel consumption.	

Table 6: Reporting categories under mobile combustion

Activity data

The country's primary energy imports include jet kerosene, gasoline, gas/diesel oil, heavy fuel oil (also known as residual fuel oil), petroleum coke, Liquefied Petroleum Gas (LPG), Petroleum coke, bitumen, and lubricants. Biomass or logged wood is still used in fireplaces or stoves mainly for heating purposes in rural houses.

No national system has been established yet for the collection of data for the GHG inventory, particularly for the consumption of fuel by end use. Therefore, for the reference approach, the main source of data is the list of aggregated amounts of fuel imports provided by the Ministry of Energy and Water (MoEW, 2016a). For the sectoral approach, activity data has been estimated based on a survey that has been undertaken by the IPT Energy Center (IPTEC) for the Ministry of Environment on the sales of fuel from IPT stations to end users. The survey was conducted for the year 2013.

Subcategory	Data Source	Assumptions
Energy industries	Ministry of Energy and Water for fuel imports (MoEW, 2016a)	All quantities of fuel reported to be delivered to EDL are consumed within one reported calendar year.
	Ministry of Energy and Water for fuel	13% of imported LPG is used in industries.
Manufacturing industries and	Imports (MOEW, 2016a) Ministry of Environment for petroleum coke use (MOE, 2017a)	49% of the gas diesel oil consumed for private generation is used by industries and neighborhood generators (1 liter of diesel oil generates 3.65 kWh).
construction	IPT Energy Center (IPT, 2014)	All imported quantities of petroleum coke are consumed within one reported calendar year.
	Ministry of Energy and Water (MoEW, 2016a)	Gas diesel oil is only used for Heavy Duty Vehicles (HDV), with an estimated consumption of 7.06 mpg (33.3 of diesel/100km).
	International Energy Agency (IEA, 2017)	Passenger cars annual mileage is 12.000 km/year.
Transport	Ministry of Interior and Municipalities, Traffic, Trucks and Vehicles Management	Light Duty Vehicles annual mileage is 27,250 km/year
	Authority for vehicle fleet characteristics	HDV annual mileage is 50,000 km/year.
	(MOIN, 2017).	Motorcycles annual mileage is 5,000 km/year.
	with a catalyst for emission control	
Commercial	IDT Energy Conter (IDT, 2014)	15% of imported LPG is used in the commercial and institutional sector.
and institutional sector	ir i Ellergy Center (IP1, 2014)	51% of the gas diesel oil consumed for private generation is used commercial institutions (1 liter of diesel oil generates 3.65 kWh).
Residential	Ministry of Energy and Water for fuel imports (MoEW, 2016a)	73% of imported LPG is used in residential sector.
sector	Biomass from FAOSTAT (FAO, 2017)	52% of remaining gas diesel oil in the market is used in
	IPT Energy Center (IPT, 2014)	
Agriculture, forestry and	Ministry of Energy and Water for fuel	48% of remaining gas diesel oil in the market is used in the agriculture, forestry and fisheries.
fisheries	imports (MoEW, 2016a) IPT Energy Center (IPT, 2014)	

Table 7: Activity data for the energy sector

Figure 9: Distribution of fuel used in Lebanon

Table 8: Quantities of fuel imported for the period 1994-2013 (for selected years)

Fuel type (1,000 tonnes)	1994	2000	2006	2011	2013
Gasoline	1243.18	1263.757	1,224.61	1,598.42	1,596.340
Jet kerosene	145.91	124.511	103.36	223.88	258.891
Gas diesel oil	818.123	1315.64	1,596.28	2,448.07	3,075.57
Heavy fuel oil	1411.01	1507.9	1,039.72	1,347.36	1332.03
LPG	146	165.12	161.12	196.67	250.976
Bitumen	66	91.72	43.86	59.19	57.102
Lubricants	0.29	37.7	29.86	35.24	40.61
Petroleum coke	180	157.01	477.86	335.60	542.342
Biomass	9.77	10.08	9.99	9.95	9.92

Source | MoEW, 2016a and MoE; 2017

Table 9: Distribution of fuel consumption by end-use for 2013

Fuel type	Consumption (1000 tonnes)
Gas diesel oil (GDO)	
Energy industries (EDL)	1,174.53
Road transport	534.02
Private generation	1,359.15
Manufacturing industries and construction	663.20
Commercial and institutional sector	695.95
Residential sector	4.08
Agriculture/forestry/fisheries	4.28
Heavy Fuel Oil (HFO)	
Energy industries (EDL)	1,183.43
International navigation	30.00
Manufacturing industries and construction	118.6
LPG	
Residential sector	180.70
Manufacturing industries and construction	32.63
Commercial and institutional sector	37.65
Gasoline	
Domestic aviation	3.00
Road transport	1,592.95
Jet kerosene	
International aviation	258.89
Petroleum coke	
Cement industries	542.34
Lubricants	
Energy industries (EDL)	40.61

Source | MoEW, 2016a and IPTEC, 2014

Energy industries – public electricity and heat production

The fuel consumption used under the energy industries category for the estimation of GHG emissions is presented in Table 10. It includes amounts of heavy fuel oil and gas/diesel oil that are delivered by the Ministry of Energy and Water to EDL, considering that these amounts are being consumed during one calendar year.

Fuel type	Quantity (1,000 tonnes)							
	1994	2000	2006	2011	2013			
Gas diesel oil	48.65	532.805	1,057.70	1,305.67	1174.529			
Heavy fuel oil	1,124.07	1294.362	956.61	1,186.78	1,183.43			
Lubricants	0.197	37.7	29.86	35.24	40.611			

Table 10: Activity data for fuel consumption in energy industries

Source | MoEW, 2016a

Manufacturing industries and construction

This category includes GHG emissions from fuel consumption in the 2 following activities:

- 1- Production of electricity, steam and process heat by industries: the industrial sector is one of the major energy consuming sectors in Lebanon. However, due to the intermittent electricity supplied by EDL and the constant power shortages, most industries in Lebanon generate their own energy from in-house generators. Gas/diesel oil and fuel oil are bought either directly from the Ministry of Energy and Water or from private fuel distributors and are used in the premises. Unfortunately, no data is recoded on these quantities. Therefore, estimations have been calculated based on the IPTEC survey on the sale of fuel per end user for 2013 (IPT, 2014).
- 2- Production of electricity by neighbourhood generators: due to the frequent power shortages, neighbourhood generators have flourished in Lebanon, supplying electricity to households during cut-off hours (which range from 3 to 15 hours a day depending on the region). All these generators work on gas/diesel oil which is bought either directly from private fuel distributors or from gas stations. Unfortunately, no data is available on the number, capacity or quantity of fuel used for private generators in the country. Therefore, based on an intensive consultation process was put in place with the main stakeholders (Ministry of Energy, Electricité du Liban, private distributers of fuel, and owners of generators) it was agreed to assume that the gap between public electricity supply and demand (referred as Energy not Supplied ENS) is being met at 80% by private generators.

As most developing countries, Lebanon suffers from a major gap between energy demand and supply, resulting in a deficit in energy of around 23%. This energy not supplied by public utilities is being supplied by privately owned generators providing electricity to households and commerce during cut-off hours. All these generators work on gas diesel oil which is bought either directly from private fuel distributors or from gas stations. Unfortunately, no data is available on the number, capacity or quantity of fuel used for private generators in the country.

Therefore, an intensive consultation process was put in place with the main stakeholders (Ministry of Energy, Electricité du Liban, private distributers of fuel, and owners of generators) to attempt to quantify the diesel used in private generation. As a result of this process, it was agreed to assume that the gap between public electricity supply and demand (referred as Energy not Supplied ENS) is being met at 80% by private generators.

The below table presents the values that were used for the year 2011. The energy not supplied is estimated by calculating the difference between the energy produced in 2011 and the estimated demand. Then, the diesel consumption of what is equivalent to 80% of this ENS is estimated using a conversion factor of 222.98 g/KWh. Finally, GHG emissions are calculated by using a country specific NCV and default emission as per IPCC guidelines

Table 11 presents the quantities of fuel used in manufacturing industries and construction for selected years based on the following assumptions:

- The heavy fuel oil used in manufacturing industries is calculated as the difference between the total fuel oil imported to Lebanon minus the amount consumed by public utilities and the amount consumed for international navigation.
- The gas/diesel oil used in this category constitutes 49% of the total gas/diesel oil consumed for private generation (the other 51% is used by the commercial/institutional sector).
- The LPG used in this sector is estimated at 13% of the total LPG import to Lebanon.
- Petroleum coke is consumed only in cement industries and imported quantities are delivered directly to the industries' locations after receiving approval from the Ministry of Environment.

Fuel type	Quantity (1,000 tonnes)					
	1994	2000	2006	2011	2013	
Gas diesel oil	424.42	292.20	153.75	361.89	663.20	
Heavy fuel oil	286.94	198.54	64.11	133.59	118.60	
LPG	21.06	21.47	20.95	25.57	32.63	
Petroleum coke	180	157.01	477.86	335.60	542.34	
Lubricants	0.102	-	-	-	-	

Table 11: Activity data for fuel consumption in manufacturing industries and construction

Source | MoEW, 2016a and MoE, 2017a

Transport

Road transport covers all internal combustion vehicles used for passengers and goods mobility in Lebanon, except farm tractors and public-work vehicles. Types of vehicles investigated in this inventory are motorcycles, passenger cars, vans, buses and trucks, classified into categories in accordance with the guidelines: Passenger Cars (PC), Light-Duty Vehicles (LDV), Heavy-Duty Vehicles (HDV) and motorcycles (Table 12). After banning the use of diesel for vehicles with gross weight lower than 3,500 kg (law 341 (6/08/2001) and decree 341/2002), passenger cars, light-duty vehicles and motorcycles run only on gasoline, while heavy duty vehicles run on diesel.

Table 12: Description of the vehicles categories used in the calculation of road transport emissions

Vehicle category	Description
Passenger Cars (PC)	Private personal gasoline cars used for mobility including Sport Utility Vehicles (SUV).
Light Duty Vehicles (LDV)	Gasoline vehicles with rated gross weight less than 3,500 kg including light trucks and coaches, designed for transportation of cargo or passengers.
Heavy Duty Vehicles (HDV)	Diesel vehicles with rated gross weight exceeding 3,500 kg including heavy trucks and coaches, designed for transportation of cargo or passengers.
Motorcycles	Includes a mixture of 2-stroke and 4-stroke engines as well as mopeds having an engine less than 50cc.

The following activity data are considered:

• The numbers of registered vehicles for are provided by the Ministry of Interior and Municipalities/traffic, truck and vehicle management authority for the years 2012 and 2015

(MoIM, 2017). The database includes the number of registered vehicles by category, type of use (private or public), production date, circulation date, horsepower, and type of fuel used, as well as by emission control technologies, following the European Union (EU) classification described in the IPCC guidelines (IPCC, 1997). The number of vehicles per category for 2013 are interpolated from the 2012 and the 2015 databases.

• Table 13 summarizes the classification of the 2013 vehicle fleet per vehicle category and EU emission control technology. Note that the classification per emission control technologies takes into consideration the common practice in Lebanon of removing the emission control catalyst without any replacement. The fraction of vehicles for which the catalyst was removed is obtained from a survey conducted in Beirut on 3,000 vehicles. (Waked, 2012; Waked and Afif, 2012; Unpublished data). The results from this survey were extrapolated to the rest of the vehicle fleet.

EU emission control technology	Passenger Cars	Light Duty Vehicles	Heavy Duty Vehicles	Motorcycles
Uncontrolled	7,220	599	298	-
Early non-catalyst control	169,027	8,081	2,991	-
Non-catalyst control	352,375	21,310	2,925	-
Oxidation catalyst	89,764	13,062	363	-
Three-way catalyst	775,306	73,370	31,973	-
<50 cc ¹	-	-	-	84,594
2-strokes ²	-	-	-	4,811
4-strokes ³	-	-	-	2,504
Total	1,393,692	116,422	38,550	91,910
¹ Motorcycles having 1 cylinder				

Table 13: Classification of the 2013 vehicle fleet per category and EU emission control technologies

² Motorcycles having 2 to 3 cylinders

³ Motorcycles having 4 cylinders and above

- The annual travelled distance per vehicle category is considered. Due to field data unavailability, an assumption was made using the ForFITS (For Future Inland Transport Systems) database. ForFITS is a modeling tool intended to evaluate the transport activity, energy use and CO₂ emissions, using transport data collected from different national and international transport related agencies (UNECE, 2014). For countries with mobility characteristics similar to Lebanon, a value of 12,000 km/year is estimated for passenger cars, 27,250 km/year for light-duty vehicles, 50,000 km/year for heavy-duty vehicles and 5,000 km/year for motorcycles.
- Gas/diesel oil is only used by heavy-duty vehicles and is estimated to be 534,021 tonnes in 2013 (see Box 1 for calculation methodology). The amounts used by passenger cars (taxis in general) and LDV are considered insignificant.

Box 1: Estimation of gas/diesel oil used in road transport

HDV diesel consumption is assumed to be 7.06 mpg (33.3 l of diesel/100km), based on the data provided by IPT on their trucks fleet consumption, and double checked against the GREET Model default value (from Argonne National Laboratory) and also compared to the results study conducted by VTT Technical Research Centre of Finland. The consumption value is averaged taking into consideration the loaded and unloaded truck trips.

HDV annual mileage assumed 50,000 km/year in ForFITS, which was validated by experts in the field (Afif, 2017).

Uncertainties

- Consumption is averaged for the whole fleet without taking into consideration the age distribution effect on consumption. It is noteworthy to mention that 2% of fuel reduction is estimated every 5 years for model year trucks above 1990. However, since the HDV fleet in Lebanon is old, the considered value (33.3 l/100km) is

representative of national conditions. Further refinement of this number could be done later.

- Expert judgments have validated the estimated 50,000 km/year based on survey that is currently being undertaken by the Universite Saint Joseph. However, it is unsure how representative the survey is to the HDV fleet.

- Diesel buses constitute a small share compared to HDV trucks, therefore, buses consumption was approximated to be similar to the average consumption of the diesel truck.

Conclusion

The gas/diesel oil total consumption for transport in Lebanon is 534,021 tonnes in 2013. The difference with numbers calculated in this file is related to the assumptions estimated above.

- Domestic flights consist of 5 small propeller-type aircrafts, used only for training. They operate on gasoline (AVGAS LBP 100) with an annual consumption ranging between 2 and 3 ktonnes. Which is estimated on a capita basis then weighted by the population and extrapolated to cover the 1994-2011 yearly consumption.
- Activities related to domestic navigation are limited to fishing boats, which are reported under the category agriculture/forestry/fisheries, and consequently, their emissions are not reported under transport. Emissions related to military maritime transport were not considered due to the unavailability of the activity data.

Other sectors

This category includes the greenhouse gases emitted by fuel combustion in the commercial/ institutional sector, residential sector and agriculture/ forestry/ fisheries. Different types of fuel are considered under this category and are mainly used for electricity generation, cooking, heating, navigating and use of other mobile equipment.

Emissions from burning of wood are allocated under the residential sector's, where in rural areas logged wood is still being used for cooking and heat generation. The biomass activity data is based on the volume of fuelwood logged from coniferous and non-coniferous forests (referred to as wood waste) as reported by FAOSTAT (FAO, 2017). Only emissions of non-CO₂ gases derived from biomass fuels are included, and reported, in the emissions of the energy sector and national totals of the inventory. Therefore, CO_2 emissions from biomass fuels are included only as information item because it is assumed that the consumption of biomass is similar to the volume that is regenerated. Any variation to this hypothesis is reflected and calculated in the LULUCF sector. Therefore, carbon dioxide emissions from biomass combustion are not included in national totals, but are recorded as memo item for cross-checking purposes as well as avoiding double counting.

Table 14 presents the quantities of fuel used in per category based on the following assumptions:

- The gas/diesel oil used for electricity generation in the commercial and institutional sector constitutes 51% of the total gas/diesel oil consumed for private generation (the other 49% is used by manufacturing industries sector)
- The remaining gas/diesel oil is used by the residential sector (52%) and by agriculture/forestry/fisheries (48%)
- The LPG used in the commercial and institutional sector is estimated at 13% and the amount used in the residential sector at 72% of the total LPG import to Lebanon.

Table 14: Activity data for fuel consumption in the commercial and institutional sector

Fuel type	Quantity (1,000 tonnes)				End-use		
	1994	2000	2006	2011	2013		
Commercial/institutional sector							
						- Electricity generation	
Gas diesel oil	57.67	306.63	161.34	379.76	695.95	- Space heating	
						- Water heating	
						- Cooking	
LPG	14.58	24.77	24.17	29.50	37.65	- Space heating	
						- Water heating	
Residential sector	•						
Gas diesel oil	65 45		-	30.02	1 08	- Space heating	
Gas dieser on	05.45			30.02	4.00	- Water heating	
						- Cooking	
LPG	110.36	118.89	116	141.61	180.70	- Space heating	
						- Water heating	
Riomass	0 77	10.08	0 08	0 05	0 02	- cooking	
ыоттазз	5.77	10.08	9.90	9.95	9.92	- Space heating	
Agriculture/forest	try/fisheries						
	179.98	-	-	19	3	Mobile equipment	
Gas diesel oil	179.98	-	-	9.40	1.28	Fishing boats	

Source| MoEW, 2016a

Feedstock and non-energy use of fuels

Some of the imported fuels are used as raw materials for the production of other products in chemical industry and metal production, or the use of fuels for non-energy purposes such as bitumen and lubricants (HS code used for Lebanon is HS 27.10.19.90). Since these fuels are not combusted, their carbon content is totally or partially stored in the product and is not oxidized into carbon dioxide for a certain period of time. The CO_2 released from the use or decomposition of the product is not reported under the energy sector's inventory but under the industrial sector's inventory (MoE/UNDP/GEF, 2015).

The calculation of carbon dioxide emissions from non-energy use of fuels is based on the relevant consumption by fuel type and the fraction of the carbon stored by fuel type (50% for lubricants and 100% for bitumen).

International Bunkers

International bunkers include international aviation and navigation. Emissions from these sources are not accounted in national totals and are reported as memo items in the inventory. The activity data for international civil aviation includes the jet kerosene consumption and is collected from the Ministry of Energy and Water (MoEW, 2016a). The activity data for navigation is limited to the heavy fuel oil consumption for international bunkers and it is collected from the fuel imports data by the International Energy Agency (IEA, 2017). Fuel consumption in ktonnes/year is presented in Table 15.

Table 15: Fuel consumption for marine bunkers ktonnes/year

Year	1994	2000	2006	2011	2013
Jet-kerosene	145.91	124.51	103.36	223.88	258.89
Marine bunkers	-	15	19	27	30

Emission factors and other parameters

Due to the lack of country specific emission factors and emissions measurements, tier 1 methodologies are adopted for the calculation of all greenhouse gases emissions from stationary combustion. CO_2 , CH_4 and N_2O emission factors and other parameters used in the calculation are based on default values of the Revised 1996 IPCC Guidelines and the IPCC Good Practice Guidance. CH_4 and N_2O emission factors are differentiated by technology and fuel, while CO_2 emission factors are differentiated only by fuel. Information on the Net Calorific Value (NCV) per imported fuel for 2013 is provided by the Ministry of Energy and Water.

Fuel type	Net calorific	Carbon content	Oxidation factor	Fraction of
	value	(tonnes C/TJ)	(%)	carbon
	(TJ/ktonnes)			stored
Gasoline	43.50	18.9	0.99	0
Jet kerosene	42.80	19.5	0.99	0
Diesel oil	41.60	20.2	0.99	0
Heavy fuel oil	41.10	21.1	0.99	0
LPG	47.31	17.2	0.99	0
Lubricants	40.19	20.0	0.99	0.5
Bitumen	40.19	22.0	0.99	1
Petroleum coke	35.30	27.5	0.99	0
Natural gas	48.00	15.3	0.995	0
Biomass	15.00	29.9	0.98	0

Table 16: Carbon content, net calorific value and other parameters by fuel type

¹ Assumption is made that no carbon is stored, except for bitumen and 50% of lubricants, as per the IPCC default values.

Table 17: CH_4 and N_2O emission factors

		CH₄ facto	emission r (kg/TJ)	N ₂ O facto	emission r(kg/TJ)	NOx facto	emission or (kg/TJ)	CO facto	emission r (kg/TJ)	NMVO factor	C emission (kg/TJ)
		Oil	Biomass	Oil	Biomass	Oil	Biomass	Oil	Biomass	Oil	Biomass
Energy indu	ustries	3		0.6		20 0		15		5	
Manufactu	ring			0.6		20		10		5	
industries	and					0					
construction		2									
	Gacolino			0.6		60		8,0		1500	
Transport	Gasonne	20				0		00			
·	Diocol			0.6		80		1,0		200	
	Diesei	5				0		00			
Commercia	l/instituti			0.6	4	10		20		5	
onal		10	300			0					
Residential				0.6	4	10	100	20	5000	5	600
		10	300			0					
Agriculture/forestry/				0.6	4	10		20		5	
ficharias						0					
listiefies		10	300								

For mobile combustion, GHG emissions from road transport have been calculated using tier 2 emission factors, which depend on the production date of vehicles, the vehicle category and the type of fuel used. Therefore, besides the classification per category, the vehicles are also categorized by model year of production. Since no national emission factors are available and most of the Lebanese vehicle fleet is constituted of European vehicles, default EU emission factors are used. Emissions from other categories under mobile combustion are calculated with default emission factors available in the 1996 IPCC guidelines (IPCC, 1997).

Table 18: Default EU emission factors for gasoline passenger cars under the tier 2 methodology

Est	Estimated emission factors for EU gasoline passenger cars (g/km)						
	NO _X	CH ₄	NMVOCs	CO	N ₂ O	CO ₂	
Thr	ree-way cat	talyst: assur	med fuel economy	11.8 km/l	(8.5 l/100 km	1)	
	0.5	0.02	0.5	2.9	0.05	205	
Oxi	idation cata	alyst: assum	ned fuel economy 1	2.3 km/l ((8.1 l/100 km)		
	1.4	0.07	1.4	7.5	0.005	190	
No	n-catalyst o	controls: ass	sumed fuel econom	ny 12.0 kn	n/l (8.3 l/100	km)	
	2.3	0.07	4.5	19	0.005	200	
Early non-catalyst controls: assumed fuel economy 10.6 km/l (9.4 l/100 km)							
	2.0	0.08	5.2	29	0.005	225	
Un	Uncontrolled: assumed fuel economy 8.9 km/l (11.2 l/100 km)						
	2.2	0.07	5.3	46	0.005	270	

Table 19: Default EU emission factors for gasoline light-duty vehicles under the tier 2 methodology

Estimated emission factors for EU LDV gasoline cars (g/km)						
	NO _X	CH_4	NMVOCs	CO	N ₂ O	CO ₂
Moderate control: assumed fuel economy 7.4 km/l (13.6 l/100 km)						
	2.9	0.08	6.1	37	0.006	325

Table 20: Default EU emission factors for diesel heavy-duty vehicles under the tier 2 methodology

Estimated emission factors for EU HDV diesel cars (g/km)							
	NO _X	CH_4	NMVOCs	CO	N ₂ O	CO ₂	
Mo	Moderate control: assumed fuel economy 3.3 km/l (29.9 l/100 km)						
	10	0.06	1.9	9	0.03	770	

USA
Korea

🗖 Japan

Table 21: Default EU emission factors for motorcycles under the tier 2 methodology

Estimated emission factors for motorcycles (g/km)						
	NO _X	CH_4	NMVOCs	CO	N ₂ O	CO ₂
Motorcycles < 50 cc Uncontrolled: assumed fuel economy 41.7 km/l (2.4 l/100 km)						
	0.05	0.1	6.5	10	0.001	57
Motorcycles > 50 CC 2 stroke Uncontrolled: assumed fuel economy 25.0 km/l (4.0 l/100 km)						
	0.08	0.15	16	22	0.002	95
Motorcycles > 50 cc 4 stroke Uncontrolled: assumed fuel economy 19.6 km/l (5.1 l/100 km)						
	0.3	0.2	3.9	20	0.002	120
		28%	<1%			Europ

8% China

Figure 10: Classification per country of origin of the 2010 Lebanese vehicle fleet

Results

In 2013, the energy sector's GHG emissions were estimated at 20,775 Gg CO₂eq. (20.7 million tonnes CO₂eq.), representing 79% of the total greenhouse gas emissions in Lebanon. Energy is mainly responsible for carbon dioxide emissions (99.63%), while it also contributes to methane and nitrous oxide emissions with 0.12% and 0.28% respectively. The contribution of each subcategory to the total of the energy sector is presented in Table **22** and Figure 11.

60%

Categories	Emissions					
	CO₂ (Gg)	CH₄ (Gg)	CH₄ (Gg CO₂eq.)	N₂O (Gg)	N₂O (Gg CO₂eq.)	Total (Gg CO₂eq.)
Total energy	20,551.07	2.12	44.47	0.58	179.56	20,775.10
Energy industries	7,367.39	0.29	6.25	0.06	18.44	7,392.08
Manufacturing energy and construction	4,403.84	0.11	2.23	0.03	9.89	4,415.96
Transport	5,987.93	1.27	26.74	0.46	143.69	6,158.35
Other sectors	2,791.91	0.44	9.26	0.02	7.55	2,808.72
Commercial/Institutional	2,234.11	0.307	6.447	0.018	5.580	2,246.14
Residential	546.21	0.132	2.772	0.006	1.806	550.84
Agriculture / Eiching / Egrectry	11.59	0.002	0.042	0.000	0.000	11.63

Table 22: GHG emissions from energy by source category and gas for 2013

Agriculture/Fishing/Forestry A Global Warning Potential of 1 was used for CO₂, 21 for CH₄ and 310 for N₂O, Numbers may reflect rounding.

Figure 11: Contribution of energy emission sources to the sector's total for 2013

Energy industries

The energy sector in Lebanon relies on fossil fuel combustion for meeting the bulk of energy requirements in the country. The final energy consumption in 2013 amounted to approximately 287,465 TJ. Since electricity generation from public power plants (energy industries) is the main fuel consumer, it is responsible for 35.58% of the sector's emissions followed by transport (29.64%) and manufacturing industries (21.26%) as illustrated in Figure 11.

Indeed, public electricity generation is the largest contributor to the sector's emission due to the fact that more than 88% of imported fuel oil and 38% of imported gas diesel oil are used in thermal power plants for public electricity generation (Figure 12).

Figure 12: Amount of gas diesel oil and fuel oil consumed per subcategory

Transport

In 2013, GHG emissions from transport are estimated at 6,158.35 Gg CO_2eq . Carbon dioxide, methane, and nitrous oxide contribute to 97.2%, 0.43%, and 2.3% of total CO_2eq . respectively.

	CO₂eq.	CO2	CH ₄	N ₂ O
Emissions (Gg)	6,158	5,988	1.27	0.46
Contribution		97.2%	0.43%	2.3%

Table 23: Transport sector GHG emissions for 2013

As for the contribution of the different vehicle categories, passenger cars have the highest share of the 2013 emissions with 58.1% of the total road transport GHG emissions (CO_2eq .), while LDV, HDV, and motorcycles account for 17%, 24.5%, and 0.5% respectively.

Manufacturing industries and construction and commercial/institutional sectors

Other high-emitting subcategories in the energy sector are manufacturing industries and construction and the commercial/institutional sector since they cover all combustion activities related to the private generation of electricity. Due to high difference between electricity supply and

demand, private generation in industries, commercial institutions and at neighbourhood levels consume considerable amounts of Gas/Diesel (GDO). In 2013, it is estimated that private generators supplied 6,095 GWh of electricity, calculated as 80% of the Energy-Not-Supplied (ENS), i.e. the difference between supply¹ (12,257 GWh) and demand (19,987 GWh) in 2013. Assuming a rate of consumption of 222.98 g/kWh of GDO, it is estimated that 1,359,149 tonnes of gas diesel have been used for private electricity generation in 2013, exceeding the amount of GDO used in EDL power plants and constituting 44% of total import of gas diesel oil.

Manufacturing industries and construction and commercial/institutional sectors also emit GHG emissions from their consumption of Liquefied Petroleum Gas (LPG) for heating and cooking, heavy fuel oil for heat generation in industries and petroleum coke for cement production (Table 24).

Table 24: CO_2 emissions from manufacturing industries and the commercial/institutional sector in 2013

	Manufacturing industries (including neighbourhood generators)	Commercial/institutional sector
Fuel Type	Emissions in 2	2013 (Gg CO ₂)
Gas/Diesel oi for private generation	2,023.00	2,122.90
Heavy fuel oil	373.35	-
LPG use	96.38	111.21
Petroleum coke	1,911.11	-
Total	4,403.84	2,234.11

Compared to the results reported in Lebanon's first BUR, the emissions from manufacturing industries and the commercial/institutional sector in 2013 seems to be twice as much as the emissions in 2011 (4,592.03 Gg CO_2eq .). This is mainly driven by the increased reliance on private generation resulting from the growing gap between the electricity supplied by EDL and electricity demand.

Table 25: Difference in GHG emissions from manufacturing industries and the commercial/institutional sector

	2011	2013
Emissions (Gg CO ₂ eq.)	4,592.03	7,224.68
DO for private generation (ktonnes)	741	1,359
Energy-not Supplied	4,158	7,619
EDL Supply (GWh)	12,406	12,257
Electricity demand (GWh)	16,564	19,876

Residential sector

In the residential sector, LPG is estimated to be the main source of GHG emissions (537.095 Gg CO_2 eq.), followed by gas diesel oil that is used for space and water heating in households. Emissions from the use of private generators in residential buildings are not allocated in this category to avoid double counting from private generation under the manufacturing industries and construction category.

¹ Electricity supply takes into account electricity production and purchase for any given year

Comparison between the sectoral approach and the reference approach

According to the IPCC guidelines, carbon dioxide emissions from the energy sector should be calculated using both the reference and the sectoral approach. The reference approach is based on detailed data on primary energy consumption, which leads to the calculation of apparent consumption of fuel and to the consequent calculation of emissions, while the sectoral approach is based on a detailed disaggregation of energy consumption by sector and fuel for the calculation of CO_2 emissions. The application of the reference approach can be considered as a quality control procedure, as the deviation of estimations should not be significant (deviations in the order of ±2%) or else explanations should be provided.

In Lebanon, carbon dioxide emissions for the energy sector are calculated according to the two methodologies. In the reference approach, it was considered stock change was not taken into consideration due lack of data, and it was assumed that all fuel imported are consumed within the same calendar year.

As shown in Table 26, the difference between the 2 approaches is 2.48%, which is slightly above the threshold defined by the IPCC guidelines. The existing difference results mainly from statistical differences in fuel consumption and the use of tier 2 methodology in the transport sector.

Table 26: Difference between the reference and sectoral approach for 2013

	CO ₂ emissions (Gg)	Difference	
Reference approach	21,072.72		2.48%
Sectoral approach	20,551.07		

International bunkers

For international bunkers, the total direct GHG emissions from aviation and marine amounted to 879.77 Gg of CO₂eq. in 2013, with 90% of these direct GHG emissions originating from international aviation.

2.2 Industrial processes

Methodology

The GHG inventory of industrial processes in Lebanon is carried out based on calculation methodologies of the Revised 1996 IPCC Guidelines for national greenhouse gas inventories and the IPCC Good Practice Guidance. Further descriptions of the methodologies used and gases covered for each source of emissions identified by the guidelines are detailed in Table 27.

Table 27: Reporting categories investigated in the inventory of the Lebanese industrial processes sector

Reporting categories	Emitted gases	Methodology, description and remarks
Cement production	CO ₂	All cement industries in Lebanon are covered in this calculation. Cement manufacturing is a key category in Lebanon. Tier 2 is adopted to calculate emissions from this category.
Lime production	CO ₂	The only lime production plant in Lebanon is covered in this calculation. Lime is also produced in cement manufacturing; however it is already accounted for in clinker produced in cement industries.

		Lebanon's Second Biennial Update Report to the UNFCCC
Limestone use	CO ₂	Limestone is mainly used in Lebanon in cement, glass and lime industries. Therefore emissions from limestone are already accounted for in each of these categories.
Soda ash production and use	CO ₂	There is no soda ash production in Lebanon. Therefore all soda ash used is imported. Percentages of soda ash used for each type of industry (glass manufacturing, soap and detergents, water treatment etc.) are not available.
Production and use of miscellaneous mineral products	NMVOCs CO SO ₂	 Asphalt use and production Bitumen used for asphalt road paving in Lebanon is imported. It is assumed that all asphalt used for non-paving applications is produced by blowing process (IPCC, 1997). Therefore, the amount of asphalt blown was derived by subtracting cement asphalt for road paving from total bitumen imports. Glass production Glass production does occur in Lebanon; however, production data could not be accessed. Therefore emissions from glass production are not estimated. Concrete pumice stone production There is no concrete pumice stone production in Lebanon. Therefore emissions are not occurring.
Ammonia production	CO ₂ NMVOCs CO SO ₂	There is no ammonia production in Lebanon. Therefore emissions are not occurring.
Nitric acid production	N ₂ O NO _x	There is no nitric acid production in Lebanon. Therefore emissions are not occurring.
Adipic acid production	N₂O NO _x NMVOCs CO	There is no adipic acid production in Lebanon. Therefore emissions are not occurring.
Carbide production	CO ₂ CH ₄	There is no carbide production in Lebanon. Therefore emissions are not occurring.
Production of other chemicals	CH ₄ NO _x NMVOCs CO SO ₂	Phosphate fertilizers are reported to be produced in Lebanon. However, data from producing companies is inaccessible to any government agency. Therefore, emissions from this category are not estimated.
Metal production	CO ₂ NO _x NMVOCs CO SO ₂	There is no metal production in Lebanon. Production of Iron and Steel from the years 2000 to 2002. Then the only metal producing company in Lebanon closed. Besides emissions from this period, none have occurred for this category.
Pulp and paper industries	NO _x CO SO ₂ NMVOCs	In Lebanon, there is no pulp production in any of the paper industries. Pulp is imported. Therefore emissions are not occurring.

		Lebanon's Second Biennial Update Report to the UNFCCC
Food and drink	NMVOCs	Categories included in this module are: wine production, beer production, meat, fish and poultry production. Estimations were also made for bread and cake and biscuits production based on quantities of imported as well as locally produced wheat. Data on coffee, animal feeds and Arak (locally produced spirit) production could not be obtained, therefore emissions from these subcategories were not estimated.
Production of halocarbons and sulphur hexafluoride	HFCs PFCs	Halocarbons are not produced in Lebanon. Therefore, emissions from production are not occurring.
Consumption of halocarbons and sulphur hexafluoride	HFCs PFCs	There is no data available on consumption of fluorinated gases. Lebanon's national ozone office is in the process of finalizing a survey to estimate the amount of ODS, mainly HFC, in the country.

Activity data

Table 28 below summarizes the data sources used for the calculation of CO_2 emissions industrial processes in Lebanon's second BUR. Details of the calculation of activity data are presented in Annex II.

Table 28: Summary of data sources used in the GHG inventory for the industrial processes sector

Reporting category	Activity data needed	Reference
Cement production	Quantity of cement produced Quantity of clinker produced	The three cement industries in Lebanon
Lime production	Quantity of lime produced	The only lime producing company in Lebanon
Soda ash use	Soda ash used	Lebanese customs through Ministry of Economy and Trade (except for the year 2013 for which data was retrieved directly from the customs website). HS code: 28.36.30.00

Data for the present inventory was collected for the time series 1994 – 2013. Table 29 present some of the activity data collected for the source categories for the industrial sector for selected years.

Table 29: Activity data for industrial processes in Lebanon for selected years

Year	1994	2000	2006	2011	2013
Quantity of clinker produced (tonnes)	298,000	3,135,084	3,868,051	4,955,079	4,881,844
Quantity of cement produced (tonnes)	298,000	2,790,336	4,043,357	5,771,074	5,905,811
Quantity of lime produced (tonnes)	15,000	2,500	2,503	2,722	1,901
Quantity of soda ash used (t)	12,072.6	9,555	14,601	9,122.62	10,564

Emission factors

The emission factors used in the calculation of emissions from industrial processes are based on default values provided by the IPCC 1996 revised guidelines except for cement industries for which a national emission factor has been calculated.

Table 30: Emission factors and other parameters for industrial processes

Reporting categories	Emission factor and other parameters	Source of emission factor
Cement production	0.51 t CO ₂ /t clinker produced	Nationally developed emission factor, SNC (MoE/UNDP/GEF, 2011)
	Correction factor for cement kiln dust (CKD): 1.02	IPCC Good Practice Guidance and Uncertainty Management, p.3.12
	0.3 kg SO ₂ /t cement produced	Revised 1996 IPCC guidelines, reference manual, p.2.7
Lime production	$0.79 \text{ t CO}_2/\text{t}$ quicklime produced	Revised 1996 IPCC guidelines, reference manual, p.2.9
Soda ash use	415 kg CO ₂ /t soda ash used	Revised 1996 IPCC guidelines, reference manual, p.2.13
	320 kg NMVOCs/t road paving material used	Revised 1996 IPCC guidelines, reference manual, p.2.14
Production and use of		
miscellaneous mineral	2.4 kg NMVOCs/t asphalt	Revised 1996 IPCC guidelines, reporting instructions,
products	roofing produced	p.2.9
	0.095 kg CO/t asphalt roofing produced	Revised 1996 IPCC guidelines, reference manual, p.2.13
	0.035 kg NMVOCs/hl beer produced	Revised 1996 IPCC guidelines, reference manual, p.2.41
	0.3 kg NMVOCs/t fish processed	Revised 1996 IPCC guidelines, reference manual, p.2.42
	0.3 kg NMVOCs/t meat processed	Revised 1996 IPCC guidelines, reference manual, p.2.42
	0.3 kg NMVOCs/t poultry processed	Revised 1996 IPCC guidelines, reference manual, p.2.42
	8 kg NMVOCs/t bread processed	Revised 1996 IPCC guidelines, reference manual, p.2.42
	8 kg NMVOCs/t bread processed	Revised 1996 IPCC guidelines, reference manual, p.2.42
	1 kg NMVOCs/t cakes and biscuits processed	Revised 1996 IPCC guidelines, reference manual, p.2.42

Box 2: Calculation of national emission factor for clinker and a correction factor for cement kiln dust

According to the IPCC Good Practice Guidance and Uncertainty Management, data on calcium oxide (CaO) content of the clinker (CaO__{Clinker}) is needed in order to generate a national emission factor for tier 2 method as per equation 3.3 p.3.12:

 $EF_{clinker} = 0.785 \text{ x CaO}_{Clinker}$

0.785 is the molecular weight ratio of CO_2 to CaO in the raw material mineral calcite (CaCO₃) from which most or all the CaO in clinker is derived.

The value obtained from the three plants producing cement in Lebanon for CaO content of clinker is: 65%.

Therefore,

 $EF_{clinker} = 0.785 \times 0.65 = 0.51 t CO_2/t clinker$

Cement Kiln Dust (CKD) is a mix of raw material and clinker that is produced by cement furnaces. It may be partly recycled to the furnace. Good practice is to correct for the CO_2 contained in the non-recycled, therefore lost calcined CKD because this CO_2 will not be accounted for by the clinker produced. The default CKD correction factor is 1.02 (i.e. add 2% to the CO_2 calculated for clinker).

Therefore, the emissions from the cement industries from clinker production as per the tier 2 method will be:

Emissions = clinker production x EF_{clinker} x CKD correction factor

Results

In 2013, total emissions from industrial processes in Lebanon amounted to 2,545.42 Gg of CO_2 . Greenhouse gas emissions primary entail the CO_2 gas from the cement and lime production sectors, with the largest contributor being cement production. Lime production and soda ash use have a very minimal contribution to CO_2 emissions in the sector. CH_4 and N_2O are not emitted from industrial processes.

Year	Total Emissions CO ₂ (Gg)	Emissions from cement production (Gg)	Emission from lime production (Gg)	Emissions from use of soda ash (Gg)
1994	171.88	155.02	11.85	5.01
2000	1,765	1,631	2	4
2006	2,020	2,012	2	6
2011	2,584	2,578	2	4
2013	2,545	2,539	1.50	4.38

Table 31: CO₂ emissions from industrial processes in Lebanon for selected years

Figure 13: CO₂ emissions from industrial processes in Lebanon per category

While emissions from some categories were not estimated due to the absence of activity data (namely glass production and phosphate fertilizers), it is assumed that these will not highly impact overall GHG emissions from the sector, as the quantity produced is believed to be very minimal compared to the highest emitter, i.e., the cement sector. However, emissions from the consumption of halocarbons and SF_6 , having a high global warming potential, may significantly affect the overall emissions from the sector in terms of CO_2 equivalent, even with small quantities.

2.3 Agriculture

Methodology

The IPCC guidelines for national GHG inventories identified six sources of GHG emissions in agriculture as follows:

- Enteric fermentation
- Manure management
- Agricultural soils
- Rice cultivation
- Prescribed burning of savannahs
- Field burning of agricultural residues

Agricultural GHG emissions in Lebanon consist mainly of emissions from enteric fermentation (CH_4 emissions), manure management (CH_4 and N_2O emissions) and agricultural soils (N_2O emissions). The other IPCC subcategories – rice cultivation, prescribed burning of savannas, and field burning of agricultural residues do not occur in Lebanon and are thus reported as Not Occurring (NO).

The tier 1 approach was employed in the calculation of emissions, using the Revised 1996 IPCC Guidelines and the GPG 2000. There are no available data to adopt a Tier 2 methodology.

For the GHG inventory of the agricultural sector, the UNFCCC software version 1.3.2 (Non - Annex 1 National GHG Inventory Software) was used. All sheets presented in the software were filled as in the module 4 (agriculture) of the software, except for sheet (4-5s1) used for the calculation of F_{BN} (nitrous oxide emission from agricultural soils). F_{BN} was calculated manually and the values entered in the sheet. The calculations are presented in Annex III.

Activity data

In BUR I, activity data of the agriculture sector was mainly derived from the FAO database (FAO Stat), which was the most complete database, with additions from the Lebanese Ministry of Agriculture, the Lebanese Customs, and the Lebanese syndicate of cattle importers. Imported beef had not been included in any national greenhouse inventory before the first BUR, which was considered an improvement in the methodology.

Based on lessons learned from the BURI and recommendations from the technical review under the ICA process to: (1) rely on national primary sources rather than secondary sources, (2) enhance sustainable institutional arrangements for data exchange between ministries, and (3) decrease reliance on independent consultants to improve institutional memory and build capacities within national institutions, a different approach for data collection has been adopted for the second BUR. The new approach consists of adopting data available at the MoA, even if incomplete or based on assumptions, and work on the establishment of institutional arrangements for continuous data exchange, which would save significant amounts of resources and time. The data missing from the Ministry of Agriculture was completed by secondary sources or extrapolation. In addition, the MoE and the MoA have initiated a long-term dialogue to understand each other's needs in terms of data collection and segregation level, in addition to participation in trainings on GHG inventories. Table 32 below summarizes the data sources used for the GHG inventory of the agriculture sector in the second BUR.

Reporting cat data needed	egory and activity	Source used in BUR I	Source used in BUR II
Livestock population	Dairy Cattle	FAOSTAT under the domain production\Livestock primary\Milk, whole fresh cow\producing animals	Ministry of Agriculture
	Non-Dairy Cattle Non-Dairy Cattle Population = Total Cattle population minus Dairy Cattle population.	Total Cattle is the summation of two sources: 1) Total Cattle: Obtained from FAOSTAT under the domain production\Live animals\Cattle\Stock. 2) Imported beef: Local data obtained from Syndicate of Cattle Importers (1997-2012). Values for 1994-1996 were extrapolated.	Ministry of Agriculture – Imported beef was not included due to: 1) lack of records and archives from BUR I on the source and contacts to obtain data on imported beef 2) the exclusion of imported beef from the MoA statistics. Future institutional arrangements will explore the possibility of gathering this data on a sustainable basis.
	Sheep, Goats.	FAOSTAT under the domain production\live animals\(name of the species)\stock	Ministry of Agriculture
	Swine, Camels, Horses, Mules, Asses	FAOSTAT under the domain production\live animals\(name of the species)\stock	FAOSTAT under the domain production\live animals\(name of the species)\stock
	Poultry (Laying Hens, Broilers and traditional chicken)	For laying hens and broilers: FAOSTAT under the domain production\livestock primary\"meat poultry > (list)" and "eggs primary >	All data obtained from the Ministry of Agriculture, and broilers were adjusted to 60 days alive using the following

Table 32: Summary of data sources used in the GHG inventory for the agricultural sector

Lebanon's Second Biennia	Update Report	to the UNFCCC
--------------------------	---------------	---------------

		(list)\producing animals. Broilers were adjusted to 60 days alive. For traditional chicken, data was obtained from Lebanese MOA. However population were missing for 1994-1996, 2006-2007 and 2011- 2012. These were obtained through extrapolation and interpolation.	equation: Population = Days alive x (NAPA/365) Where: Days alive= Average number of days for the animal before it is slaughtered NAPA = Number of Animals Produced Annually Detailed calculation of poultry population is presented in Annex III.
Nitrogen Fer	tilizer Consumption	Consumption data was taken from local imports. Data obtained from The Lebanese Customs. Values for 1994-1996 were extrapolated.	2013 data obtained by extrapolation from the available data series from the previous inventory. Data available at the Lebanese customs did not match the data series gathered for the first BUR and no explanation could be obtained. Data not available at the Ministry of Agriculture.
Crop Production	Dry beans, green beans, broad beans, horse beans, chickpeas, lentils, lupins, dry peas, green peas, vetches, barley, maize, oats, sorghum, wheat, carrots and turnips, garlic, onions, potatoes.	FAOSTAT under the domain Production\crops\(name of crop)\production quantity.	FAOSTAT under the domain Production\crops\(name of crop)\production quantity. Data available at the Ministry of Agriculture only until 2009. Crop production values should be reported on dry matter (DM) basis. Therefore all crop production values were multiplied by the appropriate DM fractions.
	Alfalfa.	Alfalfa production was obtained by multiplying the area harvested by the yield. Area harvested was obtained from FAOSTAT. Yield (40 tonnes Fresh Weight/ha) was obtained from expert judgment.	Alfalfa production was obtained by multiplying the area harvested by the yield. Area harvested was obtained from FAOSTAT, except for the year 2013, estimation was provided by Ministry of Agriculture. Yield (40 tonnes Fresh Weight/ha) was adopted from expert judgment during BUR I.
Manure Man	agement systems	Data was obtained though expert judgment and survey of selected dairy, poultry and swine farms (Liban Lait, Dairy Khoury, Hariri Farms, Hawa Chicken, Tanmia, Wilco, Porkys).	Data was adopted from BUR I.

Table 33 to Table 37 present some of the activity data collected for livestock population, fertilizer consumption, crop production and manure management for selected years.

Table 33: Activity Data for livestock population in Lebanon for selected years

	Lebanon's Second Biennial Update Report to the UNFC							
	Number of animals (heads)							
-	1994	2000	2006	2011	2013			
Dairy Cows	51,620	38,900	43,900	55,000	67,118			
Other Cattle	43,480	38,100	33,100	15,000	13,382			
Sheep	242,980	354,000	370,400	450,000	450,000			
Goats	418,980	417,000	484,400	550,000	550,000			
Camels	530	450	440	200	200			
Horses	6,810	3,580	3,580	2,634	4,000**			
Mules and asses	26,500	19,780	19,780	20,000	20,000			
Swine	52,800	26,000	10,000	7,650	5,300*			
Poultry	11,790,260	14,491,781	16,972,603	13,363,014	12,705,479			

*extrapolation

**estimation

Table 34: Fraction of Manure Nitrogen per Manure Management System (MMS) in Lebanon based on expert judgement

	Dairy Cows	Other Cattle	Sheep	Goats	Camels	Horses	Mules	Swine	Poultry
Anaerobic Lagoons	0.01	Cattle	_	_			_	_	
Liquid systems	0.005								
Solid storage and drylot	0.955	1	0.33	0.33				0.9	
Daily spread	0.01							0.1	
Pasture range and paddock	0.02		0.67	0.67	1	1	1		0.04
Poultry manure without bedding									0.19
Poultry manure with bedding									0.77

Table 35: Amount of synthetic fertilizer applied to soil in Lebanon for selected years

	1994	2000	2006	2011	2013
Synthetic Fertilizer Applied to Soil N _{FERT} (Kg N/yr)	31,016,000	25,354,000	9,535,000	18,359,000	18,269,111*

*extrapolation

Table 36: Amount of pulses produced in Lebanon for selected years, reported in tonnes on a dry matter basis

Production of pulses (dry) (tonnes)	Dry matter	1994	2000	2006	2011	2013
Dry beans	1 ^(a)	4,726	100	200	743	426
Green beans	0.85 ^(b)	25,500	39,015	10,795	21,250	20,773
Broad beans, horse beans	1 ^(a)	1,950	300	300	126	150
Chick peas	1 ^(a)	9,700	2,200	1,200	3,547	2,435
Alfalfa	0.5 ^(c)	13,600	15,000	15,000	15,000	10,000

Lebanon's Second Biennial Update Report to the UNFCCC

Lentils	1 ^(a)	13,000	800	600	1,893	1,471
Lupins	1 ^(a)	1,170	1,150	450	132	115
Dry peas	1 ^(a)	1,986	2,450	2,400	2,500	2,495
Green peas	0.85 ^(b)	10,880	3,740	2,465	3,715	3,476
Vetches	0.9 ^(d)	4,500	4,725	2,835	648	742.5
Total (dry basis)		87,012	69,480	36,245	49,554.35	42,084.15

(a) Pulses data from FAO are on DM basis; (b) 2000 GPG; Table 4.16; (c) WSU, 2016; (d) 2006 IPCC GL, Table 11.2; (N-Fixing Forages)

Table 37: Amount of non-N fixing crop produced in Lebanon for selected years, reported in tonnes on a dry matter basis

Production (dry) (tonnes)	DM	1994	2000	2006	2011	2013
Barley	0.88 ^(e)	17,762.8	8,272	27,984	26,400	30,800
Maize	0.88 ^(e)	3,595.68	3,080	2,728	2,640	2,640
Oats	0.88 ^(e)	448.8	352	211.2	161.04	128.48
Sorghum	0.88 ^(e)	1,454.64	1,232	756.8	396	440
Wheat	0.88 ^(e)	46,354	95,128	134,992	110,000	123,200
Carrots and turnips	0.12 ^(c)	3,914.4	984	696	612.72	456.96
Garlic	0.35 ^(f)	12,250	3,850	1,085	992.95	668.85
Onions	0.14 ^(f)	9,910.46	22,064	6300	12,131.98	10,701.18
Potatoes	0.45 ^(g)	144,795.2	123,750	179,100	123,750	185,400
Total (dry basis)		240485.9	258712	353853	277084.7	354435.5

(c) WSU, 2016; (e) 2006 IPCC GL - Table 11.2; (f) Slovenian NIR; (g) 1996 IPCC GL - reference Manual Table 4.17

Emission factors

Enteric fermentation

Emission factors used for calculation of methane emissions from enteric fermentation are default values from 1996 IPCC GL and reported in Table 38 below. Total CH₄ emissions is then the sum of emissions from all animal categories, except poultry as per the guidelines (enteric fermentation in poultry is insignificant).

Table 38: Methane emission factors for enteric fermentation.

Species	CH₄ Emission factor	Source
Sheep	5	1996 IPCC GL, reference manual, Table 4.3
Goats	5	
Camels	46	
Horses	18	
Mules and asses	10	
Swine	1	
Dairy cows	100	1996 IPCC GL, reference manual Table 4.4. Milk production data are

Other cattle48used in estimating an emission factor for enteric fermentation using the
Tier 1 method. Average annual milk production for dairy cows in
Lebanon is 4,200 kg/head/yr (comparable to Western Europe).

Manure management

Methane (CH₄)

Table 39 below shows the emission factors used for calculating methane emission from manure management. In addition to the livestock populations used for calculating methane emission from enteric fermentation, poultry populations were also included for estimating methane emissions from manure management. For cattle and swine, emission factors suitable for Eastern Europe were chosen as they better reflect the conditions for manure management in Lebanon (i.e. solid based systems are used for the majority of manure). For the other species shown in Table 39, emission factors for temperate regions were chosen from the default factors proposed by the 1996 IPCC guidelines. Indeed, in the Reference Manual, Table 4-1, three climate regions are defined in terms of annual average temperature: cool (<15°C), temperate (15°C - 25°C), and warm (>25°C). Livestock population in Lebanon all fall within the temperate region.

Species	EF (kg/head/year)	Source
Sheep	0.16	1996 IPCC GL, reference manual, Table
Goats	0.17	
Camels	1.9	
Horses	1.6	
Mules and asses	0.9	
Poultry	0.018	
Dairy cattle	19	1996 IPCC GL, reference manual, Table
Other cattle	13	4-5 (Lastern Europe)
Swine	7	

Table 39: Methane emission factors for manure management.

• Nitrous Oxide (N₂O)

The amount of N_2O emitted from manure management is estimated using the IPCC Tier 1 approach where the total amount of Nitrogen excretion (from all livestock species/categories) in each type of Manure Management System (MMS) is multiplied by an emission factor for that type of MMS. In the absence of country-specific emission factors, the IPCC default nitrogen excretion rates (N_{ex}) and emission factors were used. Table 40 and Table 41 provide the nitrogen excretion rates for animal species N_{ex} and emission factors used for each type of MMS. Fraction of manure managed in each MMS was determined using surveys of major dairy, non-dairy, swine, and poultry farms as well as expert judgment from academic experts.

	Dairy	Other	Buffalo	Sheep	Goats	Camels	Horses	Mules	Swine	Poultry	Source
	Cows	Cattle									
			Fr	action o	f Manur	e Nitroge	n per MI	VIS			
Anaerobic	0.01										Expert
Lagoons											judgement
Liquid	0.005										
systems											
Solid storage	0.955	1		0.33	0.33				0.9		
and drylot											
Daily spread	0.01								0.1		
Pasture	0.02			0.67	0.67	1	1	1		0.04	
range and											
paddock											
Poultry										0.19	
manure											
without											
bedding											
Poultry										0.77	
manure with											
bedding											
				Nitroge	en Excre	tion (kg/ł	nead/yr)				
	70	50		12	12	40	40	40	16	0.6	1996 IPCC
											GL, RM,
											Table 4-
											20.

Table 40: Nitrogen excretion rate for animal species and fraction of manure managed in each manure management system in Lebanon

Table 41: Emission factors for Nitrous Oxide emission for each utilized manure management system.

MMS	Emission Factor (kg N ₂ O-N/kg N excreted)	Source
Anaerobic lagoons	0.001	GPG 2000, Table 4.12 and Table 4.13
Liquid systems	0.001	
Solid storage & drylot	0.02	
Poultry with bedding	0.02	
Poultry without bedding	0.005	
Daily spread	0.00	

* As per the 1996 IPCC guidelines, emissions from pasture range and paddock are not reported under manure management, but rather under agricultural soils, which is why this table does not contain an emission factor for this type of MMS.

Agricultural soils

Emissions of N_2O from agricultural soils result from anthropogenic N inputs through both a direct and an indirect pathway. Direct pathway occurs via two mechanisms (a) intentional additions of N

directly to soils through synthetic fertilizers, nitrogen fixation by N-fixing crops, animal manure, and crop residues and (b) unintentional additions of N through animals grazing on pasture, ranges, and paddocks (PRP). Indirect N₂O emissions occur through two pathways – volatilization from applied fertilizer and manure as NH₃ and NO_x and subsequent deposition, and through leaching and runoff of applied fertilizer and animal manure.

• Direct Nitrous Oxide emissions

F_{SN}: Nitrogen from Synthetic Fertilizer

 F_{SN} is annual amount of synthetic fertilizer nitrogen added to soil, adjusted for NH_3 and NO_x volatilization.

Table 42: Factors used for the calculation of nitrogen from synt	nthetic fertilizer
--	--------------------

Fraction of Synthetic Fertilizer	0.1	1996 IPCC GL, Reference Manual,
Applied Emitted as NO _x and NH ₃		Table 4-24
Frac _{GASF}		
Emission factor for direct	0.0125	1996 IPCC GL, Reference Manual,
emissions (kg N ₂ O-N/kg N)		Table 4 -18

F_{AW}: Nitrogen from Animal Manure

 F_{AW} is annual amount of animal manure nitrogen adjusted for (a) NH₃ and NO_x volatilization, (b) for manure dropped on soil from animal grazing (PRP), and (c) for fraction of manure N burned (i.e. used as fuel, assumed zero).

In order to avoid double counting, N-inputs from animals on pasture, range, and paddock (PRP) is subtracted from nitrogen additions from animal manure (F_{AW}) and added separately as direct N_2O emissions from Pasture, Range, and Paddock.

Table 43: Factors used for the calculation of nitrogen from animal manure

Fraction of Nitrogen excreted during grazing (Frac _{PRP})	0.2-0.34	Frac _{PRP} was calculated as the ratio of the amount of nitrogen excreted during grazing (PRP) to the total nitrogen excreted from all MMS. Appropriate cells on worksheet: 4-1s2 A24/ 4-1s2 A27
Fraction of Nitrogen excreted emitted as NO_x and NH_3	0.2	1996 IPCC GL, Reference Manual, Table 4-19
Emission factor for direct emissions (kg N ₂ O- N/kg N)	0.0125	1996 IPCC GL, Reference Manual, Table 4 -18
Emission Factor for AWMS (kg $N_2O - N/kg N$)	0.02	GPG 2000, Table 4.12

F_{BN}: N fixed by Crops

 F_{BN} is the annual amount of nitrogen added to soil through the process of nitrogen fixation by N-fixing crops cultivated annually. Nitrogen fixing crops include pulses (dry beans, broad beans, peas, chickpeas, and lentils), leguminous crops (green peas and green beans) and N fixing forages (alfalfa and vetch). F_{BN} is manually calculated using Tier 1a method (Equation 4.25; 2000 GPG):

$F_{BN} = 2 \times Crop_{BF} \times Frac_{NCRBF}$

Where

 $Crop_{BF}$ = Yield of Pulses and leguminous vegetables (kg dry Matter/year, refer to Table **36**) $Frac_{NCRBF}$ = Fraction of biomass that is nitrogen (0.03, default value: 1996 IPCC GL, Reference Manual, Table 4.19) As per IPCC recommendations, crop production values for N-fixing crops are all reported on dry matter (DM) basis. Therefore, all crop production values were multiplied by the appropriate DM fractions (see AnnexI V for detailed calculations of F_{BN}).

The factor 2 converts the edible portion of the crop (which is reflected in the production data) to total crop biomass.

The emission factor for direct emissions (0.0125 kg N_2 O-N/kg N) also applies for the calculation of nitrogen fixed by crops.

F_{CR}: Nitrogen from crop residues

Nitrogen returned to soil from crop residues left to decompose in the field.

Table 44: Factors used for the calculation of nitrogen from crop residues

Fraction of nitrogen in N fixing crops	0.03	1996 IPCC GL, Reference Manual, Table 4.19
Fraction of nitrogen in non N fixing crops	0.010	
Fraction of crop residue burned Frac _{BURN}	0	Experts judgement
Average of fraction of residue removed from field for N fixing and non N fixing crops Frac _R	0.66	Experts judgement (LARI) for Frac _R of each crop. We calculated the average
Emission factor for direct emissions (kg N_2O -N/kg N)	0.0125	1996 IPCC GL, Reference Manual, Table 4 -18

• Indirect Nitrous Oxide emissions

Indirect N₂O emission from nitrogen added to agricultural soils are based on two sources. These are: volatilization and subsequent atmospheric deposition of NH_3 and NO_x from the application of fertilizers and animal manure, and leaching and runoff of the nitrogen that is applied to or deposited on soils.

Note: Emissions of N_2O produced from the discharge of human sewage into rivers are reported under the waste sector.

Table 45: Fractions and emission factors used for calculating indirect emissions from agricultural soils

Fraction of total manure N excreted that volatizes $Frac_{GASM}$ kg NH ₃ -N + NO _x -N volatilized/kg of N excreted by livestock	0.2	1996 IPCC GL, Reference Manual, Table 4-19
Fraction of synthetic fertilizer N applied that volatizes $Frac_{GASF}$ kg NH ₃ -N + NO _x -N volatilized/ kg of fertilizer N applied	0.1	1996 IPCC GL, Reference Manual, Table 4-24
Fraction of N that leaches Frac _{LEACH} kg N leached /kg of fertilizer or manure N applied	0.3	1996 IPCC GL, Reference Manual, Table 4-24
Emission Factor for atmospheric deposition of NH_3 and NO_x (EF ₄) (kg $N_2O - N/kg N$)	0.01	1996 IPCC GL, Reference Manual, Table 4-23
Emission factor for leaching (EF_5) (kg $N_2O - N/kg N$)	0.025	1996 IPCC GL, Reference Manual, Table 4-23

Results

In 2013, total GHG emissions from the agricultural sector were 987.55 Gg CO₂eq, constituting 4% of total national emissions. Nitrous oxide (N₂O) emissions from agricultural soils (511.5 Gg CO₂eq.) represented over half of emissions from agriculture, CH₄ emissions from enteric fermentation were 265.61 Gg CO₂eq., and N₂O and CH₄ emissions from manure management 210.4 Gg CO₂eq. Most of the emissions from manure management were due to N₂O emissions as opposed to CH₄.

The summary of methane (CH₄) emissions from enteric fermentation and manure management and nitrous oxide (N_2O) emissions from manure management and agricultural soils are presented in Table 46 below.

Year	1994	2000	2006	2011	2013
Enteric fermentation (Gg CH ₄)	11.02	9.88	10.55	11.48	12.64
Enteric fermentation (Gg CO ₂ eq.)	231.42	207.48	221.55	241.06	265.44
Manure management (Gg CH ₄)	2.27	1.83	1.80	1.72	1.91
Manure management (Gg CO ₂ eq.)	47.67	38.43	37.80	36.20	40.11
Total Gg CH ₄	13.29	11.71	12.35	13.21	14.55
Manure management (Gg N ₂ O)	0.46	0.47	0.52	0.53	0.55
Manure management (Gg CO_2eq .)	141.05	145.70	161.20	164.3	170.50
Agricultural soils (Gg N ₂ O)	1.99	1.75	1.29	1.62	1.65
Agricultural soils (Gg CO ₂ eq.)	615.35	542.50	399.90	502.20	511.50
Total Gg N ₂ O	2.44	2.22	1.81	2.15	2.20
Total emissions from agriculture (Gg CO ₂ eq.)	1,035.49	934.11	820.45	943.87	987.55

Table 46: GHG emissions for the agriculture sector for selected years

The main source of emissions across the years is N_2O from agricultural soils, which constitute over half of total agricultural emissions, while the remaining sources of emissions are almost equally from enteric fermentation (CH₄) and from manure management (CH₄ and N₂O) (Figure 14).

Figure 14: GHG emissions by agricultural source (Gg) and contribution (% of total from agriculture)

Enteric fermentation

Enteric fermentation is a major source of emissions within the agricultural sector. In 2013, it constituted 265.44 Gg $CO_2eq.$, compared to 241.16 Gg $CO_2eq.$ in 2011 and 221.55 Gg $CO_2eq.$ in 2006. Dairy cattle are the main methane emission source for enteric fermentation, followed by sheep and goats (Table 47).

Species	1994	2000	2006	2011	2013
Dairy Cattle CH ₄ (Gg)	5.16	3.89	4.39	5.50	6.71
Non-Dairy Cattle CH ₄ (Gg)	2.08	1.82	1.58	0.72	0.64
Sheep CH ₄ (Gg)	1.21	1.77	1.85	2.25	2.25
Goats CH ₄ (Gg)	2.09	2.08	2.42	2.75	2.75
Camels CH ₄ (Gg)	0.024	0.02	0.020	0.0092	0.0092
Horses CH ₄ (Gg)	0.12	0.064	0.064	0.0047	0.072
Mules and Asses CH ₄ (Gg)	0.26	0.197	0.197	0.20	0.2
Swine CH ₄ (Gg)	0.052	0.026	0.010	0.0076	0.0053
Poultry CH ₄ (Gg)	0.00	0.00	0.00	0.00	0.00
Total CH ₄ (Gg)	11.02	9.88	10.55	11.48	12.64
Total CO ₂ eq. (Gg)	231.42	207.48	221.55	241.16	265.44

Table 47: Methane emissions from enteric fermentation for selected years

Manure management

In 2013, dairy cattle were also the largest contributor to CH_4 emissions from manure management (67%). They are followed by non-dairy cattle (9%) and poultry (12%) (Figure 15).

Figure 15: Distribution of methane emissions from manure management per selected species in 2013.

Nitrous oxide emission from manure management depends on how manure for each animal species is distributed between different Manure Management Systems (MMS). MMS utilized in Lebanon for different animal species and the fraction of manure nitrogen per species per MMS are presented in Table 34. Mainly, cattle manure is largely managed in solid storage and drylot, whereas sheep and goats are distributed between Pasture, Range and Paddock (PRP) and solid storage and drylot. Poultry manure is mainly managed with bedding and to a lesser extent without bedding (traditional chicken manure is included under PRP).

Nitrous oxide emissions from major MMS are presented in Table 48 below. Manure managed under solid storage and drylot, and poultry manure managed with bedding represent the largest sources of emissions (almost equally), since nitrogen excretions from manure managed in those two systems are the highest (Figure 16). Note that emissions from daily spread and from pasture, range and paddock are considered under emissions from agricultural soils and therefore not included in the calculations of N₂O emissions from manure management.

Table 48: Nitrous oxide emissions from major manure management systems utilized in Lebanon for selected years

	1994	2000	2006	2011	2013
Anaerobic lagoons N ₂ O (Gg)	0	0.00	0.00	0	0.00
Liquid systems N ₂ O (Gg)	0	0.00	0.00	0	0.00
Daily spread					
Solid storage & drylot N ₂ O (Gg)	0.28	0.24	0.26	0.27	0.29
Pasture range and paddock					
Poultry manure without bedding N_2O (Gg)	0.01	0.01	0.02	0.01	0.01
Poultry manure with bedding N_2O (Gg)	0.25	0.22	0.25	0.25	0.25
Total N ₂ O (Gg)	0.46	0.47	0.52	0.53	0.55
Total CO₂eq.	141.05	147.70	160.20	164.3	170.50

Figure 16: Amount of nitrogen (kg N/year) excreted from animals in different manure management systems in Lebanon in 2013

Agricultural soils

In 2013, 40% of total N₂O emissions from soils were due to indirect emissions, while direct emissions were 42%, and emissions from grazing (PRP) were 18%. Shares of subcategories from agricultural soils emissions remain fairly stable over the years as shown in Table 49. Figure 17 further disaggregates direct and indirect emissions into their subcategories for the year 2013. Leaching constitutes a much larger fraction (90%) than atmospheric deposition (10%). Leached nitrogen enters the groundwater, riparian areas, and rivers where it enhances biogenic production of N₂O. Emissions from this category are therefore directly linked to the use of N fertilizers, and they will vary accordingly. On the other hand, fertilizer use and animal waste are the main sources of direct emissions.

Year	Total dire emissions	ct	Total indirect emissions		Emissions from animal grazing		Total N ₂ O emissions from soils	Total N ₂ O emissions from soils
	Gg N₂O	% total	Gg N₂O	% total	Gg N₂O	% total	Gg N ₂ O	Gg CO _{2eq}
1994	0.98	49	0.79	40	0.22	11	1.99	615.35
2000	0.81	46	0.70	40	0.24	14	1.75	542.50
2006	0.51	40	0.52	40	0.26	20	1.29	399.90
2011	0.68	42	0.65	40	0.29	18	1.62	502.20
2013	0.69	42	0.66	40	0.30	18	1.65	511.50

Table 49: Total emissions from agricultural soils and its subcategories in Lebanon for selected years

Figure 17: Contribution of subcategories to direct and indirect emissions from agricultural soils in 2013

2.4 Land use, land use change and forestry

Methodology and activity data

Selection of the appropriate tier level for the land categories and subcategories, non-CO₂ gases and carbon pools, was mostly based on the resources available for the inventory process. The representation of most land-use areas and land conversions was done following the Approach 3 which is a Tier 3 level methodology used in the selection of activity data. The top-level land categories which were considered in the change detection mapping were forest land, cropland, grassland, wetlands, settlements and other land. The definitions for these categories according to the National classification system based on the Land Cover / Land Use map of 1998 are listed in Annex IV.

Initial collection and calculation of the activity data (Annex IV) was conducted following three methodologies depending on the availability and type of country-specific data:

- Approach 3 within Intergovernmental Panel Climate Change Good Practice Guidance
- Surveys and personal communications
- Interpolations and extrapolation

The abbreviations FF, GG, CC, WW, SS, OO denoted land-use categories undergoing no conversions; and the abbreviations LF, LG, LC, LW, LS, LO denoted land conversions to these land-use categories (Annex IV). Overall, land categories and subcategories were accounted for in the inventory estimation depending on data availability.

Land use categories	e Subcategories Estimations ies calculated ¹		Not Estimated (NE)/No activity data available	Assumptions
	Forest land remaining forest land	Estimated	-	-
Forest land	Land converted to Forest land	Other land converted to Forest land through afforestation/ plantations	Grassland and Cropland converted to Forest land	No Settlements converted to Forest land
Cropland	Cropland remaining Cropland	Estimated		
	Land converted to cropland	-	Forest land, Grassland and Other land converted to Cropland	No Settlements converted to Cropland
Grassland	Grassland remaining Grassland	Estimated	-	-
	Land converted to Grassland		Cropland, Forest land and Other land converted to	No Settlements converted to Grassland

Table 50: Land use categories and subcategories, carbon pools and non-CO₂ gases accounted for in the inventory estimation of the LULUCF sector in Lebanon

		Lebanon's Second Biennial Update Report to the UNFCCC				
Land use categories Subcategories		Estimations calculated ¹	Not Estimated (NE)/No activity data available	Assumptions		
			Grassland			
Wetland	Wetland remaining Wetland	-	-	Estimations not required for calculation ²		
	Land converted to Wetland	Grassland converted to Wetland	-	No Cropland, Forest land, Settlements or Other lands that are converted to Wetlands		
Settlement	Settlements remaining Settlement			Estimations not required for calculation ²		
	Land converted to Settlements	Forest land, Grassland and Cropland converted to Settlements	Other land converted to Settlements	-		
Other land	Other land remaining Other land	-	-	Typically unmanaged in reference to GPG (IPCC, 2003-p.3.145)		
	Land converted to Other land	-	Forest land, Grassland and Cropland converted to Other land	No Settlements converted to Other land		

¹ Estimations are calculated for the following carbon pools and non-CO₂ gases depending on data availability: AGB, BGB, DOM, litter and soil carbon; CH₄, N₂O, CO and NO_x ² Lebanon is considered as non-Annex I Party in the UNFCCC convention.

GHG emissions and removals reported from the LULUCF sector in Lebanon are respectively caused by biomass losses and increments and by variation in soil carbon stocks from the different land use and land use change categories which were taken into consideration in this work (**Table 51**).

Table 51: Causes of GHG emissions and removals reported for the LULUCF sector in Lebanon

Biomass losses	Biomass increments	Increase in soil carbon stocks and litter	
Forest converted to settlement	Growth of forest lands		
Grassland converted to settlement			
Cropland converted to settlement	Growth of croplands		
Burned forest lands	(Perennial crops)	Afforestation	
Burned croplands (perennial crops)	-	Andrestation	
Burned grasslands	Growth of lands converted		
Fuelwood gathering from forests	to forests or plantations (Afforestation)		

Almost all burned areas in Lebanon have resulted from human-caused fires. It is not easily possible to have natural causes of fires such as lightning due to the coincidence of lightning with the start of the wet season.

Emission factors and other parameters

Collection of the Emission/Removal (E/R) factors was done following two methodologies according to the availability and type of data:

- Tier 1: IPCC GPG default data or assumptions
- Tier 2: Country-specific data from global databases, literature or surveys, and personal communications

A complete list of the E/R factors investigated and reported in reporting tables for the calculation of GHG emissions and removals from 1994-2013 is provided in Annex IV. E/R factors were collected or calculated (by averages and extrapolations) for each category depending on the disaggregation level required by the GHG emission/removal calculation method and depending on the data availability. Detailed calculations, values and sources of all the E/R factors are reported and documented in the UNFCCC reporting tables.

Results

In 2013, LULUCF acted as a greenhouse gas sink in Lebanon, with net removals equal to -3,368.86Gg CO_2 (Table 52). Indeed, Lebanon's wide forest cover still represents a significant CO_2 sink, although a downward trend in sink capacities have been observed in recent years due to deforestation, forest fires and most importantly, urbanization.

	CO ₂	CO ₂	CH_4	N ₂ O	Total
	emissions	removals	emissions	emissions	emissions
	Gg	Gg	Gg	Gg	Gg CO₂ eq.
Land use, land use change and forestry	149.67	-3,518.80	0.01094	0.00014	-3,368.86
A. Forest land	0.00	-2,296.94	0.01066	0.00013	-2,296.67
1. Forest land remaining forest land		-2,210.73			-2210.73
2. land converted to forest land		-86.21			-86.21
B. Cropland	0.00	-1,221.86	0.00	0.00	-1,221.86
1. Cropland remaining cropland		-1,221.86			-1,221.86
2. Land converted to cropland					0.00
C. Grassland	0.00	0.00028	0.00001	0.00	0.01
1. Grassland remaining grassland		0.00028	0.00001		0.00
2. Land converted to grassland					0.00
D. Wetlands	0.04	0.00	0.00	0.00	0.04
1. Wetlands remaining wetlands					0.00
2. Land converted to wetlands	0.04				0.01
E. Settlements	149.63	0.00	0.00	0.00	149.63
1. Settlements remaining settlements					
2. Land converted to settlements	149.63				149.63
F. Other land	0.00	0.00	0.00	0.00	0.00
1. Other land remaining other land					

Table 52: Lebanon's GHG emissions/removals summary from the LULUCF sector for 2013

2. Land converted to other land

Results reflect calculations of emissions from LULUCF based on 2003 GPG for LULUCF.

Numbers may reflect rounding.

The main categories that are contributing significantly to the emissions/removals in LULUCF are the conversion from forest land, crop land and grassland to settlements. These are mainly driven by the following factors:

- Unregulated urban sprawl
- Active market of the real estate sector
- Absence of clear zoning
- Expansion and improvement of the road networks in rural areas
- Improvement of public and private services in rural areas
- Lack of interest of owners of cropland, forest land and grassland in keeping such type of lands due to increase in land prices and increase demand for commercial and residential development projects
- High costs of labors to maintain croplands
- Lack of a market for the agricultural products
- Degrading financial situation of citizens (selling agricultural lands and grasslands which are eventually converted to urbanized areas)

It is important to note, however, that the reported numbers of annual conversion to settlement accounted only for the annual sum of any conversion that is above 90 to 100 m². This was mainly due to the spatial resolution of the employed satellite imagery. Counting the changes that are below 90 m² can slightly increase the total areas of conversion to settlement.

Type of change		Change in area (ha)	CO2 emissions/removals (Gg)
Forest to	Coniferous	48.62	+11.94
settlements	Broadleaf	258.75	+57.87
	Mixed	49.56	+11.63
Cropland to	Perennial	265.25	+61.27
settlements	Annual	329.37	+6.04
Grassland to set	tlements	296.687	+0.87
Fuelwood gathering (m ³)		18,769 m ³	+26.8
Forest land remaining forest land (difference			+3.15
between 2012 a	ind 2013)	-356.94	
Afforestation (C	umulative)	3,597.56	-86.20

Table 53: Changes in emissions/removals in 2013

Further observations showed that broadleaf forests were the most affected by land conversion to settlements. This was mainly the result of the relatively large extent of broadleaf forests in the country and the fact that urbanization most likely occurs more on shrubland (mostly broadleaf vegetation) than on forested areas.

Conversions to settlements have also affected croplands and grasslands. It is easier, however, to convert annual crops than removing perennial crops (mainly comprising fruit trees and orchards). Conversions of cropland and grassland to settlements might be related to the lack of interest of owners in keeping such type of lands (e.g. increase in land prices related to an increasing number of population, increasing demand for development projects), high costs of labors and lack of a market for the agricultural products, and degrading financial situation of citizens (selling agricultural lands and grasslands which were eventually converted to urbanized areas). This has been at least confirmed for artificialized cropland on the Lebanese coast.

The total estimate for fuelwood gathering in 2013 was 18,769 m³, a quite constant number over the inventory time period resulting in an average CO_2 emission of about 27 Gg/yr. Moreover, a decrease of 0.14% in forest lands from 2012 was shown in 2013, which is was mainly attributed to urbanization resulting in a decrease in CO_2 removals from forest areas by 12.1 Gg. Afforestation activities in 2013 covered a total area of 302.62 ha of forests leading to a cumulative increase in CO_2 removal of 86.20 Gg in 2013.

The main source of GHG emissions in 2013 was wildfires affecting forest land, cropland and grassland, with forest lands being the main target of these fires (Table 54).

Туре		Burned areas (ha)	CO ₂ emissions (Gg)	CH₄ emissions (Gg)	N ₂ O emissions (Gg)
	Coniferous	4.75	+0.68	_	+0.00013
Forest	Broadleaf	44.25	+5.79	+0.01066	
	Mixed	78.56	+10.78		
Cropland ¹	Annual	NE	NE	NE	NE
	Perennial	9.56	+2.20	NE	NE
Grassland ²		37.88	NE	+0.00028	+0.00001

Table 54: Emissions from burned areas in 2013

¹CH₄ and N₂O emissions from croplands are not accounted for in the GPG for LULUCF since the source of these types of emissions are mainly agricultural activities (fertilization, livestock, burning, etc.). These are included in the agricultural sector.

²CO₂ emissions from burned grasslands are not accounted for in Tier 1 of the IPCC GPG for LULUCF, since it is assumed that there is a balance in biomass stocks of grasslands. Burned lands are only calculated for perennial crops.

In 2013, forests followed by croplands had the largest contribution to CO_2 emissions/removals in the LULUCF sector in Lebanon (Figure 18).

Figure 18: CO₂ emissions/removals by category in 2013.

Table 55 shows for selected years a summary of the total CO_2 and non- CO_2 emissions/removals in Gg CO_2 equivalent from the LULUCF sector.

GHG emissions/removals of the LULUCF sector	1994 [*]	2000	2005	2010	2013
CO ₂ (Gg)	-3450.84	-3221.29	-3303.30	-3218.00	-3369.12
CH ₄ (Gg)	NE	0.03	0.04	0.04	0.01094
CH_4 (Gg CO_2 eq.)	NE	0.57	0.74	0.81	0.22974
N ₂ O (Gg)	NE	0.00	0.00	0.00	0.00014
N ₂ O (Gg CO ₂ eq.)	NE	0.11	0.14	0.16	0.0434
NO _x (Gg)	NE	0.00	0.00	0.01	0.00149
CO (Gg)	NE	0.41	0.52	0.59	0.16316
Total emissions (Gg CO ₂ eq.)	NE	0.68	0.88	0.97	0.2731
Total removals (Gg CO ₂)	-3450.84	-3221.29	-3303.30	-3218.00	-3369.12
Net GHG removals (Gg CO_2 eq.)	-3450.84	-3220.61	-3302.42	-3217.03	-3368.85

Table 55: Lebanon's GHG emissions/removals summary from the LULUCF sector for the period 1994-2013 (for selected years)

*NE: Not Estimated. No activity data about burned areas from 1994-1998 resulting in no data about total emissions during this period.

2.5 Waste and wastewater

Methodology

According to the IPCC guidelines, the source category "waste" covers emission from disposal and discharge of both solid waste and wastewater, while differentiating between the various management options. The fundamental basis for the inventory methodology rests upon three assumptions:

- 1. The flux of methane (CH₄) to the atmosphere is assumed to be equal to the sum of emissions from solid waste disposal sites and wastewater treatment, and emissions from waste incineration (considered to be negligible).
- 2. The flux of nitrous oxide (N_2O) to the atmosphere is assumed to be equal to the sum of emissions from wastewater treatment and emissions from waste incineration.
- 3. Carbon dioxide (CO_2) can be estimated by first establishing the rates of organic content in waste incinerated.

Based on the availability and level of aggregation of the information on waste and wastewater characteristics in Lebanon, the tier 1 method was adopted for the emissions calculations.

Activity data –Solid waste

Data on solid waste generation is not readily available and where available, information is disaggregated (by site, operator, local authority, etc.), decentralized and often reported in hard copy reports making any manipulation and analysis time consuming and difficult. Furthermore, solid waste amounts are generally estimated based on population and generation rate per capita estimations and not on direct weighing and monitoring of collected solid waste from households and institutions. Surveys and assessment conducted for the years 1994 (El Fadel and Sbayti, 2000), 2006 (CDR, 2006), and 2010 (MoE, 2010) produced generation rates for these respective years. Due to the increased

migration from rural to urban areas and major cities during the past 20 years, a significant increase in the quantity of waste in Beirut and Mount Lebanon (excluding Jbeil Caza which is served by a private waste collection operator) took place over the last years. The estimated quantities of municipal solid waste generated within the Greater Beirut Area and Mount Lebanon in year 2013 was estimated to be 2,850 tonnes/day, compared to 2000 tons/day back in year 1999 (SWEEP-net, 2014).

The data collection for this GHG inventory (was conducted using several references and studies that helped retrieving basic information to start building up the model. This information was mainly based on population statistics, waste statistics, review of literature made available through national reports and publications and personal communication. In addition, expert consultation meetings were held in order to validate assumptions and findings. Extrapolations and interpolations were used when data was unavailable.

	Population includes:
	- Lebanese residents in 2013 was extrapolated from published surveys from CAS
	for the years 1997, 2004 and 2010
	 Foreign workers (Approx. 840,000 in 2013) as per CAS
	- Palestinian refugees (calculated as 441,000 in 2013) as per the United Nations
Population	Relief and Works Agency
ropulation	- Syrian displaced starting 2012 were retrieved from official yearly publicationsby
	the UNHCR (UNHCR, 2013)
	Interpolation and extrapolation were performed using a growth rate of 1.65% as
	commonly used in studies for World Bank (World Bank, 2011; SWEEP-Net, 2010).
	· · · · · · · · · · · · · · · · · · ·
	The generation rate for the Lebanese population, including foreign workers and
	Palestinian refugees, was extrapolated based on publications issued for the years 1994
	(El Fadel and Sbayti, 2000), 2006 (CDR, 2006), and 2010 (MoE, 2010). For other years,
	Syrian displaced was adapted from Lebanon Environmental Assessment of the Syrian
Per capita waste	Conflict.
generation rate	
8	The waste generation rate for the Lebanese population (including foreign workers and
	Palestinian refugees) is 1.05. The rate for Syrian displaced varies between 0.47 for the
	bekaa region, 0.5 for the south, 0.51 for the north and 0.53 for Beirut and Mount
	Lebanon (MoE/EU/UNDP, 2014).
	Waste generation for the years 1994 through 2013 was calculated based on the "per
Municipal solid	capita waste generation rate" (tonnes/capita/year) and the population (capita and
waste generation	refugees) for each year respectively.
	4 "managed" Solid Waste Disposal Sites (SW/DS) are considered in Lebanon: Naameb
	7 Thanaged Solid Waste Disposal Sites (SWDS) are considered in Lebanon. Natinen
	have partially received waste during 2013, 2014 and 2015.
Municipal solid	
waste disposed in	Information on the waste quantities landfilled/dumped in these sites was retrieved from
Solid Waste	the managing entities of these landfills: LACECO reports for the Naameh Landfill, Moores
Disposal Sites	for the Zahle landfill, BATCO for Tripoli landfill, Sidon Environmental for Saida and
(SWDS)	UNISAK for Minien, Baalbeck and Nabatien.
	Waste quantities generated by Syrian displaced were adapted from Lebanon
	Environmental Assessment of the Syrian Conflict (MoE/EU/UNDP, 2014).
Onen dumensites	In 2011, a datailed survey was conducted on dynamites in Laborary (Mar. 1990). FLADD
Open aumpsites	in 2011, a detailed survey was conducted on dumpsites in Lebanon (MOE, UNDP, ELARD,

Table 56: Activity data for solid waste emissions calculations

	Lebanon's Second Biennial Update Report to the UNFCCC
	2011). The study was used as a basis for analysis on the status of dumpsites in Lebanon and for emission factors estimations in 2013.
Percentage of treatment (composted, recycled, reused)	The information provided by personal communications with the MoE on the operational solid waste treatment facility was the base for calculating the percentage of waste composted, recycled and reused (MoE, 2017c).
Health care waste (HCW)	The portion of HCW incinerated was retrieved from MoE and extrapolated for the period 1994-2013. Autoclaving conducted by Arcenciel and specifically operations as of the year 2003 significantly reduced the amount of waste incinerated. It should be highlighted however that incineration is still conducted at various medical establishments without permits or monitoring.
Quantity of recovered gas	The information of recovered gas in the operational landfills was provided from the supervising consultants' reports for each of the landfills through MoE. Only methane recovered from the Naameh landfill have been considered in this inventory.
Exported quantities	Quantities of waste exported are minimal and are mainly composed of hazardous material. These amounts have not been taken into account in the calculation of CH_4 emissions from waste disposal mainly due to their composition.

Table 57: Main data collected and	d computed for solid waste
-----------------------------------	----------------------------

Year	Population	Waste generation rate (kg/cap/d)	Total waste generated (Gg/yr)	Quantity of recovered CH ₄ (Gg)	% deposited in SWDS	% recycled reused composted
1994	3,863,542	0.83	1,170.46	0	96%	4%
2000	4,262,161	0.90	1,400.12	0	89%	11%
2006	4,701,909	1.00	1,716.20	10.94	87%	13%
2011	5,102,830	1.05	1,955.66	16.11	85%	15%
2013	6,131,254 ¹	0.47-1.05	2,177.72	18.14	83%	17%
¹ This inc	¹ This includes 5,272,613 as Lebanese population and 858,641 as Syrian displaced					

Table 58: Solid waste generation and disposal considered for Syrian Displaced for the year 2013

Mohafaza	Registered Syrian Displaced ¹	Solid waste Generation rate (kg/refugee/day)	Solid waste generation (kg/year)	Solid waste disp (tonnes/year)	oosal
Beirut ML	223,249	0.53	43,187,519	43,187.52	Naameh landfill
North	250.128	0.51	46.561.327	12,571.56	Tripoli landfil ¹²
	, -			33,989.77	Open dumps
Bekaa	280.110	0.47	48.052.871	24,026.44	Zahleh landfill ³
			-	24,026.44	Open dumps
South	105,154	0.5	19,190,605	19,190.61	Open dumps
Total	858,641		156,992,322		

¹ Including Syrian displaced, Palestine Refugees from Syrian and returning Lebanese

2 Tripoli landfill receives 27% of the waste generated in North Lebanon. The remaining quantities are disposed of in open dumps

3 Zahleh Landfill receives 50% of the waste generated in the Bekaa. The remaining quantities are disposed of in open dumps.

Source| adapted from MoE/EU/UNDP, 2014

The calculation of methane generated from solid waste disposal sites based on the use of the Methane Correction Factor (MCF) available by the IPCC (IPCC, 2007) taking into account the different SWDS categories. Naameh, Tripoli, Zahleh and Saida landfills are categorized as Managed, with an MCF of 1. The 504 unmanaged dumpsites are classified between deep and shallow, as per the data available by MoE/UNDP/ELARD (2011). It is worth noting that some dumpsites were classified as shallow in this study despite having a depth of \geq 5 m since they were reported to be regularly on fire, thus losing potential methane generation. Total amounts of waste received by the different managed and unmanaged classes are presented in Table **59** and Table 60.

Tabla	E0.	Doccri	ntion	of		catogo	rioc
rable	59.	Descri	μισπ	01.3	20,000	catego	ries

SWDS Category	MCF	Description
		- Sufficient depth
		 High compaction with suitable equipment
		 Properly designed and well-operated leachate and storm water systems
		 Proper site management with no scavenging at the operational area
Managed	1	- Control of incoming waste types and quantities and environmental
		monitoring schemes established
		- Frequent surface covering
		 Prevention of landfill fires, litter and scavenging animals
		- Gas control and extraction/recovery
		- Sufficient depth
Unmanaged doon		- High compaction
(> E m wasto)	0.8	- Anaerobic degradation conditions in substantial or all parts of the sites
(2 5 III Waste)		 Poor and light operational equipment
		- Scavenging by people and animals
		 Poor and light operational equipment
Linmanaged shallow		 Scavenging by people and animals
(< 5 m wasto)	0.4	 Aerobic degradation conditions in substantial or all parts of the sites,
		- Frequent fires, often used deliberately and systematically mainly to reduce
		volumes and to "get rid of" the SW

Source | IPCC, 2007

Table 60: Proportion of waste received by each category of unmanaged sites

	Proportion of waste (by weight) for each type of SWDSs ¹						
Year	Managed	Unmanaged – deep (≥5 m waste)	Unmanaged – shallow (< 5 m waste or >=5 m with open burning)				
1994	0.00	0.31	0.69				
2000	0.54	0.14	0.31				
2006	0.56	0.14	0.30				
2011	0.65	0.11	0.24				
2013	0.65	0.11	0.24				

¹ it is considered that 31% of open dumpsites are unmanaged-deep and 69% are unmanaged-shallow (by weight) (MoE/UNDP/ELARD, 2011).

As for health care waste, a new sectoral assessment on industrial and unintentionally released POPs was prepared by the Ministry of Environment in 2017. The inventory updated the amount of health care waste being incinerated since 2004 based on a field survey with hospitals, which necessitated the recalculation of CO_2 emissions from waste incineration to preserve a time-series consistency.

Table 61: Quantities of medical waste being incinerated

	2004	2006	2009	2011	2013
Medical waste (tonnes/year)	330	284	219	216	57

Source | MoE/UNEP/GEF, 2017

Activity data -Wastewater

Limited information is available in Lebanon with regards to wastewater generation rates, treatment percentages and discharge media. Therefore, all of the activity data relies on assumptions and estimation that are either made for this inventory or adopted from other publications.

Table 62: Activity data and assumptions made for wastewater emissions calculations

Wastewater quantities	Wastewater quantities are estimated based on the degradable organic content (kg BOD/1000 persons) of the Lebanese population. Calculations take into account Syrian displaced located in Lebanon, where it is assumed that the same wastewater discharge practices are adopted.
Wastewater management	There is no large-size wastewater treatment plan (WWTP) that is currently operational in Lebanon. Some small size rural WWTPs are reported to be partially operational and/or their efficiency questioned. These are therefore not considered in this inventory.
Wastewater discharge	The discharge media of wastewater considers only three options: river discharge, septic tank and sea. Discharge percentages were computed based on the percentage of households' sewerage connections onto the networks vs. connections to septic tanks as published by CAS in 2009. This was complemented by overlaying GIS layers showing population data in various regions in Lebanon to calculate the percentage of the wastewater discharged in the different media. It is assumed that the inside regions in Lebanon (Bekaa) discharge into rivers and/or septic tanks and coastal zones discharge into sea and/or septic tanks.
Industrial Wastewater	In Lebanon, quantities of industrial wastewater generated from the industrial sector are not available. Relevant studies estimate it as 20% of municipal wastewater generation, which is also the assumption made for this inventory (MoEW, 2010a) Industrial wastewater is generally discharged either in sewers that release wastewater directly in the sea without treatment or directly in rivers. Therefore, and based on the geographic distribution of industries between coastal and inland area, it is considered in this inventory that 85% of industrial wastewater is discharged in the sea and 15% in rivers (MoInd, 2015) Since there is limited information on the wastewater generation per type of industry, its Chemical Organic Demand content could not be determined. Therefore, the degradable organic component of municipal wastewater is used.

Table 63: Specific data for wastewater

Year	Population	Degradable Organic Component (kg BOD/1000 Pers)	Total Organic Wastewater generated (kg BOD/yr))	Wastewater generation incl. industrial ³ (kg BOD/yr)	Discharge in Rivers (%)	Discharge in septic tanks (%)	Discharge in sea (%)	
1994	3,863,542	23700	91,565,935	109,879,122	0.15	0.26	0.59	
2000	4,262,161	23700	101,013,224	121,215,869	0.15	0.26	0.59	
2006	4,701,909	23700	111,435,234	133,722,281	0.15	0.26	0.59	
2011	5,102,830	23700	120,937,071	145,124,485	0.09	0.28	0.63	
2013	6,131,254 ¹	23700 ²	145,310,711	174,372,853	0.09	0.28	0.63	
1								_

¹ This includes 5,272,613 as Lebanese population and 858,641 as Syrian displaced (UNHCR, 2013)

² considered to be the same for Lebanese population and Syrian displaced

³ industrial wastewater adds a load of 20% on the domestic wastewater

Emission factors

For the calculation of GHG emissions from solid waste, the following tables show the parameters and the methane correction factor used for each type of disposal site. The main source of information for the SWDS parameters and MCF used is the IPCC (2000) considering the unavailability of country specific and site-specific data.

Expert judgment was used to estimate some of the parameters in the cases where ranges were provided in the guidelines or in the cases where no clear provision is taken in the guidelines. These parameters were discussed and validated during the expert consultation meeting.

Based on the recommendations of the inventory review of the first BUR, the fraction of degradable organic carbon (DOC) which actually degrades (DOCf) used for Lebanon was estimated inconsistent with the IPCC Good Practice Guidance. It was suggested use the value 0.5 instead of 0.77 and revise estimates. The fraction of DOC which actually degrades has been changed accordingly.

Table 64: Parameters adopted for methane generation from MSW

Parameters	Values
Fraction of DOC in MSW (%)	17
Fraction of DOC which actually degrades (%)	50
Fraction of carbon released as CH_4 (%)	50
CH ₄ oxidation correction factor (%)	0
Sauras LIDCC 2000	

Source | IPCC, 2000

Table 65: Methane correction factor from SWDS

Type of site	CH ₄ correction factor
Managed	1.0
Unmanaged – deep (>= 5 m waste)	0.8
Unmanaged – shallow (< 5 m waste)	0.4
6	

Source | IPCC, 2000

Table 66: Incineration default values considered for HCW and municipal waste

Incineration default values	Source		
	MSW	HCW	
Carbon content of waste (%)	40	60	(IPCC, 2000)
Fossil carbon as % of total carbon	40	40	(IPCC, 2000)
Efficiency of combustion	95	95	(IPCC, 2000)
CH ₄ Emission Factor (EF) (%)	0	0	
N ₂ O emission factor (kg N ₂ O/Gg waste (dry))	400	0	(CDR, Ramboll, 2012)

Table 67: Wastewater parameters and conversion factors

Parameters	Value	Source
Degradable organic component (kg Biological Oxygen Demand (BOD)/1000pr/yr)	23,700	Expert judgment
Fraction of degradable organic component removed as sludge (%)	0	Expert judgment
CH_4 conversion factor for river discharge (0 to 1)	0.1	Expert judgment
CH ₄ conversion factor for septic tank (0 to 1)	0.3	Expert judgment
CH_4 conversion factor for sea (0 to 1)	0.2	Expert judgment

Maximum CH_4 producing capacity (kg CH_4 /kg BOD)	0.6 (IPCC, 2007)					
EF (kg CH ₄ / kg BOD) for treatment system	- (No treatmen	t considered)				
CH_4 recovered or flared (%)	0					
Organic content loading kg BOD/1000pr/yr) ¹	23,700					
¹ This was used as the degradable organic component of the wastewater, equivalent to around 65 g of BOD per						

liter of wastewater based on the design of treatment plants in Lebanon.

Table 68: Wastewater methane emission factor for commercial and domestic wastewater

Wastewater Handling System	Fraction of Wastewater Treated by the Handling	Methane Conversion Factor for the Handling	Product	Maximum Methane Producing Capacity	Emission Factor for Domestic/Commercial Wastewater
	System	System		(kg CH ₄ /kg BOD)	(kg CH ₄ /kg BOD)
River Discharge	0.09	0.1	0.01		
Septic Tank	0.28	0.3	0.08		
Sea	0.63	0.2	0.13		
		Aggregate MCF:	0.22	0.6	0.13

Table 69: Wastewater methane emission factor for commercial and domestic wastewater

Wastewater Handling System	Fraction of Wastewater Treated by the Handling	Methane Conversion Factor for the Handling	Product	Maximum Methane Producing Capacity	Emission Factor for Domestic/Commercial Wastewater
	System	System		(kg CH ₄ /kg BOD)	(kg CH ₄ /kg BOD)
River Discharge	0.15	0.1	0.02		
Sea	0.85	0.2	0.17		
		Aggregate MCF:	0.19	0.6	0.11

Table 70: Parameters used for N₂O emissions calculation

Parameters	Values	Source
		Food and Agriculture
Per capita protein consumption (protein in kg/person/yr)	25 to 30	Organization (FAO) reports for
		the years 1990-2007
Fraction of nitrogen in protein (kg nitrogen (N)/kg protein)	0.16	(IPCC, 1997)
Amount of sewage N applied to soils as sewage sludge (kg N/yr)	0	
EF (kg N ₂ O-N/kg sewage-N produced)	0.005	(IPCC, 1997)

Results

In 2013, activities related to the generation and treatment of solid waste and wastewater emitted 1,826.7 Gg CO₂eq., thus contributing to 7% of Lebanon's total GHG emissions. CH₄ emissions are mainly generated from solid waste disposal, N₂O emissions from the discharge of wastewater effluents into aquatic environments, while CO₂ gases are mainly emitted from the health care waste incineration.

	CO ₂	CH₄		N ₂ O		Total CO₂eq.
	Gg	Gg	Gg CO₂eq.	Gg	Gg CO₂eq.	Gg CO₂eq.
Solid waste*	0.05	60.91	1,279.14			1,279.14
Wastewater	0.00	19.09	400.97	0.47	146.51	547.47
Total	0.05	80.00	1,680.11	0.47	146.51	1,826.67
*including waste inci	neration					

Table 71: Greenhouse gas emissions from solid waste and wastewater per gas in 2013

The results of the inventory show that GHG emissions are highly dependent on emissions from solid waste generation and management activities, constituting more that 80% of the sector's emissions. CH_4 is the main greenhouse gas emitted by these activities due to high proportion of waste being disposed in dumpsites coupled to low methane recovery rates. As for the CO_2 emissions from incineration, they are insignificant compared to emissions from other disposal methods since autoclaving has become the most used method for treating health care waste in Lebanon. Emissions of N_2O are mainly linked to wastewater generation and disposal, whether it is discharged in rivers, sea or septic tanks.

3 Key category analysis

Key category analysis is performed in accordance with GPG 2000 and GPG-LULUCF 2003 guidelines. Key categories under the guidelines are sectors whose emissions when summed in descending order of magnitude, add up to 95% of total greenhouse gas emissions. 8 categories have been identified as key in the analysis, with CO_2 being the main gas and the energy sector being the main key category. Key categories have remained the same throughout the 1994- 2013 period. The results of key category analysis are shown in Table 72.

Sector	Source categories	GHG	Emission estimate (Gg CO2eq.)	Level assessment (%)	Cumulative total (%)
Energy	CO ₂ mobile combustion: energy industries	CO2	7,367.39	28.05%	28.05%
Energy	CO ₂ mobile combustion: road vehicles	CO ₂	5,977.51	22.76%	50.80%
Energy	CO ₂ emissions from manufacturing industries and construction	CO ₂	4,403.84	16.76%	67.57%
Industrial processes	CO ₂ emissions from cement production	CO ₂	2,539.54	9.67%	77.23%
Energy	Other sectors: commercial CO ₂	CO ₂	2,234.11	8.50%	85.74%
Waste	CH ₄ emissions from solid waste disposal sites	CH_4	1,279.14	4.87%	90.61%
Energy	Other sectors: residential CO ₂	CO ₂	5,46.20	2.08%	92.69%
Agriculture	N ₂ O (direct and indirect) emissions from agricultural soils	N ₂ O	511.50	1.95%	94.63%

Table 72: Key category analysis for 2013

4 Trend analysis

Lebanon has already prepared national GHG inventories as part of national communication and biennial update report processes and has produced and updated its numbers since 1994. In light of

new activity data, improved methodologies and revised emission factors, the inventory has gone through 2 recalculation exercises: one for the Third National Communication (TNC) which resulted in changes in the transport, agriculture, and waste sectors and one for this second BUR which mainly affected the results of the waste sector's emissions. The GHG emissions for the period 1994-2013 have therefore changed twice, reducing emissions by 3% to 5.5% across period, hence modifying Lebanon's business-as-usual emission trajectory. Table 73 and Table 74 present the changes in emissions caused by recalculations and Annex V provides additional details on sectoral recalculations.

Year	Emissions reported in TNC (Gg CO ₂ eq.)	Emissions reported in BURII (Gg CO ₂ eq.)	Percent change
1994	13,947	13,185	-5.46%
2000	17,062	16,288	-4.54%
2006	18,790	17,890	-4.79%
2011	24,653	23,743	-3.69%
2012	26,333	25,550	-2.97%

Table 73: Changes in national emissions after recalculation

Table 74: Changes in emissions of the year 1994 after recalculations

Emissions (Gg CO2eq.)	1994	1994 recalculated in BURI	1994 recalculated in BUR II	Reasons for recalculation
Energy	7,743	7,743	7,833	Change fuel type from coking coal to petroleum coke
Transport	3,991	1,571	1,577	Change from tier 1 to tier 2 methodology Addition of GHG emissions from domestic aviation
Industrial processes	1,924	1,924	1,924	
Agriculture	1,130	1,037	1,035	Change in activity data
LULUCF	210	210	54	Change from approach 1 to approach 3
		-3,450	-3,450	methodology
Waste	902	1462	762.36	Change in activity data in solid waste and health care waste quantities Change in fraction of DOC which actually degrades
Total	15,900	13,947	13,186	

Table 75: Trend of emissions during the period 1994-2013

	Total GHG emissions (Gg CO ₂ eq.)	Energy (Gg CO₂eq.)	Transport (Gg CO ₂ eq.)	Industry (Gg CO2eq.)	Agriculture (Gg CO₂eq.)	Land Use and Forestry (Gg CO2eq.)	Waste (Gg CO ₂ eq.)
1994	13,186	7,833	1,577	1,924	1,035	-3,450	762
2013	26,285	14,617	6,158	2,545	987	-3,519	1,827
% change 1994-2013	99%	87%	291%	32%	-5%	-2%	140%

Figure 19: Trend in GHG emissions 1994-2013

Figure 20: Trend of GHG emissions 1994-2013

Lebanon's GHG emissions are increasing at an average rate of 3.4% every year, which lead to a doubling of emissions since 1994. As shown in Figure 20, the trend of increase in total GHG emissions closely follows the trend of emissions from the energy sector, which constituted 53% to 59% of total emissions during this period. This significant growth in emissions reflects the growing demand for electricity, due in part to the changing socio-economic conditions and to the expansion of the national grid. In fact, the sharp increase noticed between the 1994 and 2000 emissions is due to the increase in gas/diesel oil consumption that accompanied the installation and operation of the Baalbeck, Tyre, Beddawi and Zahrani diesel power plants during this period.

However, emission growth did not follow a stable trend, as it witnessed 2 detectable drops in 2007 and 2010 in addition to one significant increase in 2009. The drop in the emission trend in 2007, mainly driven by a similar drop in gas diesel oil import is an indirect result of the July 2006 war where significant damage to the road network and electricity infrastructure was inflicted. Indeed, due to the impairment of the electricity distribution network, it was impossible to distribute all the electricity produced and consequently thermal power plants were operating at partial load during the year 2007. The rehabilitation of the infrastructure extended over 2 years, and it was not until 2009 that power plants started to run on full capacity again, hence explaining the peak in GHG emissions in 2009. As for the decrease in emissions observed in 2010 which is proportional to the decrease in gas/diesel oil import, it is mainly caused by 1) the use of natural gas in the Deir Aamar plant in 2010 thus consuming 40% less gas/diesel oil, 2) the increase in hydropower production by 34% from 2009 to 2010 and 3) the decrease in production of the Tyre plant (consuming 30% less gas diesel oil).

Figure 21: Fuel import and GHG emissions trends of the energy sector

The sector with the most significant change in emissions is still the transport sector with emissions increasing by a factor of 3.9 reaching 6.1 million tonnes CO_2 eq. in 2013. Nitrous oxide has increased by a significant factor of 11.5 due to the fact that vehicles equipped with technologies for emission control are suspected to emit higher amounts of nitrous oxide.

This increase is mostly related to the upturn of the number of registered vehicles in Lebanon from 500,000 in 1994 to 1,640,000 in 2013. Among the main reasons for this significant increase is the inefficient and unreliable management of the mass transport sector, preventing the modernization and growth of the system and allowing the market to be controlled by private operators with an adhoc evolution strategy; consequently, encouraging passengers to rely on their private cars for their

daily trips, along with the lack of policy enforcement for encouraging deployment of new fuel efficient vehicle technologies.

It is worth mentioning that the decrease in the yearly emission rates of the different greenhouse gases between 1994 – 2000 and 2000 – 2005 is a natural consequence to the advancements in reduction of consumption and emissions of new vehicles with emission control technologies. However, this technology advancement in emissions savings did not reduce the fleet average emissions over the period 2005 – 2013 as shown in Table 76, and the upturn that took place is explained by the 8.62% yearly increase in the number of registered vehicles over the same period, and more likely in the increase in the yearly average distance travelled.

	Number of	CO2	CH ₄	N ₂ O
	vehicles	(Gg)	(Gg)	(Gg)
1994	479,120	1,548.18	0.46	0.04
2000	756,885	2,629.29	0.71	0.10
2005	970,803	3,540.62	0.85	0.20
2013	1,640,574	5,977.51	1.27	0.46
Yearly increase (%) 1994-2000	9.66%	11.64%	9.06%	25.00%
Yearly increase (%) 2000-2005	5.65%	6.93%	3.94%	20.00%
Yearly increase (%) 2005-2013	8.62%	8.60%	6.22%	16.45%

Table 76: Trends of road transport emissions in Gg/year and in % during the period 1994-2013

The waste sector also witnessed a significant increase in emissions, increasing by a factor of 2.4 from 1994. With an increase in population, in waste generation and in percent of waste deposited in landfills, methane emissions from solid waste disposal on land have increased by 93% during this period. A significant increase in emissions is detected in 1997 coinciding with the start of operations of the Naameh landfill and a small decrease in emissions may be attributed the 2006 war. Following the evacuation of a part of the population to abroad and the displacement of the residents of the southern suburbs of Beirut, less waste was generated and disposal methods were altered during this period. In fact, waste displacement occurred from areas served by managed landfills (Beirut) in the direction of areas served by unmanaged solid waste disposal sites (mainly in the South of Lebanon) thus impacting the generation of methane and total GHG emissions.

The increasing emission trend is also caused by the development of the industrial sector. The shy increase is mainly due to the cement and lime production that increased from 2006 to 2013. The sector witnessed a decrease of emissions from 1994 to 2002 due to decrease in soda ash use and lime production. Industrial activity picked up starting 2003 with a yearly increase in emissions of 3.9%, except in 2006, where a significant drop of cement production was caused by the July 2006 war. This was compensated by the booming of reconstruction activities after the war, resulting in an increase in emissions again.

The agriculture sector is still showing a decrease in emissions with a reduction of -5% from the 1994 levels. This is mainly due to the decrease in emissions from agricultural soils and to a lesser extent from enteric fermentation. These are in turn caused by the decrease in the use of nitrogen fertilizers and in crop residues added to soils in addition to the decline in dairy, sheep, and swine populations during the period 1994-2013.

As for Land Use, Land Use and Forestry, forests are still constituting important sinks of greenhouse gases. However, changes in forest and vegetation covers due to wildfires and mainly urbanization resulted in a net decrease of 2.37% in CO₂ emissions. Indeed, the peak of land converted to settlement recorded in 2013 coincides with a peak in the amount of cement deliveries (a total of

5,905,811 tonnes) in the same year 2013, which explains the high rate of urbanization on the expense on forested or planted areas.

Figure 22: CO₂ emissions/removals from the changes in the LULUCF sector

Overall, the comparison of emissions and removals shows that emissions from land conversions, burning of biomass and fuelwood gathering are higher than the removals caused by the growth of new plantations (afforestation). Although net emissions/removals proved that LULUCF is a major sink, emissions from changes in land use and land cover were still high and couldn't be compensated by the afforestation activities.

Reforestation activities have played an important role in increasing removals during the last decade, especially after the Ministry of Environment signed in 2010 around 41 reforestation agreements covering 185 ha. and the five-year Lebanon Reforestation Initiative (LRI) was launched by the United States Forest Service in 2010.

5 Indirect GHG emissions

The role of carbon monoxide (CO), nitrogen oxides (NO_x) and non-methane organic volatile compounds (NMVOCs) is important for climate change as these gases act as precursors of tropospheric ozone. In this way, they contribute to ozone formation and alter the atmospheric lifetimes of other greenhouse gases. Sulphur dioxide (SO_2) also has an indirect impact on climate, as it increases the level of aerosols with a subsequent cooling effect. Therefore, emissions of these gases should be taken into account in national inventories.

Emissions of non-CO₂ gases are calculated based on tier 1 methodology by applying emission factors which are organized by sector. In reality, emissions depend on the fuel type used, energy combustion technology, operating conditions, control technology and on maintenance and age of the equipment. However, since such detailed data is unavailable in Lebanon, the use of more detailed methodologies was not possible.

In Lebanon, the transport sector is the major source of indirect greenhouses, being responsible for 61% of NO_x emissions, 99% of CO emissions and 65% of NMVOCs. Fuel combustion for energy production is the main emitter of SO_2 with 94% of emissions, mainly caused by the sulphur content in burnt fuel. As for industrial processes, they mainly emit NMVOCs, being responsible for 34% of these emissions.

		Emissions (Gg)					
	NO _x	СО	NMVOCs	SO ₂			
Energy	34.43	3.55	1.05	111.66			
Transport	54.23	371.06	75.83	5.58			
Industrial processes			40.31	1.77			
Agriculture	0.00	0.00	0.00	0.00			
LULUCF	0.01	0.16	0.00	0.00			
Waste	0.00	0.00	0.00	0.00			
Total	88.67	374.77	117.19	119.01			

Table 77: Indirect GHG emissions and SO₂ emissions in 2013

Figure 23: Indirect GHG emissions and SO₂ emissions in 2013

For the transport sector, indirect GHG emissions are dominated by passenger cars, with a significant HDV contribution to SO_2 emissions since HDV uses diesel fuel with higher sulphur content compared to gasoline in passenger cars (**Table 78**)

Table 78: Indirect GHG emissions for the transport sector in Gg in 2013

Category	CO₂eq.	NO _x	со	NMVOCs	SO ₂
РС	3,571.95	25.69	231.32	49.63	2.07
LDV	1,042.29	9.20	117.38	19.35	0.63

HDV	1,504.52	19.27	17.35	3.66	2.87
Motorcycles	29.07	0.03	5.01	3.18	0.02
Total	6,147.83	54.19	371.06	75.83	5.58

Industrial processes emit SO_2 and NMVOC mainly from use of asphalt for road surface, food and beverage production and cement production.

Figure 24: Emissions of indirect greenhouse gases from industrial processes for the year 2013

6 Quality assurance/ quality control procedures

6.1 Quality control

The inventory compilation team performed some quality control procedures intended to ensure transparency and quality of the GHG inventory. The implemented measures that have been monitored and documented are mainly focused on the general level related to the processing, handling, documenting, archiving and reporting procedures that are common to all the inventory source categories. Source category specific quality control procedures were also implemented, but these were not comprehensively documented by the respective coordinators of the various national inventory chapters. By adopting this approach, the inventory compilation team intended to bring significant improvement on both the implementation and reporting of QC procedures, while balancing quality control requirements, improved accuracy and reduced uncertainty against requirements for timeliness and cost effectiveness. It is the aim of the inventory team of experts to maintain this balance in subsequent inventories and enable continuous improvement of Transparency, Accuracy, Completeness, Comparability and Consistency of inventory estimates.

Below is a list of the general QC performed measures:

- Ensured that the description of activity data and emission factors match information on source categories described in IPCC guidelines and that they are properly recorded.
- Confirmed that bibliographical data references are properly cited in the BUR report and in internal documentation.

- Double checked a sample of activity data, emission factors and other parameters from each source category for transcription errors in the UNFCCC model, the BUR report and the internal documentation sheets.
- Checked that emissions are calculated correctly through performing recalculation of emissions from selected sources and years.
- Checked that units of numbers entered in UNFCCC calculation sheets correspond to the unit mentioned in labels.
- Searched for outlier emission figures and double check accuracy of reported emissions.
- Identified activity data and other parameters that are common to multiple source categories and confirmed that there is consistency in the values used for these parameters in the emissions calculations.
- Ensured that qualifications of individuals providing expert judgement for estimates are appropriate.
- Ensured that assumptions and expert judgements are properly recorded.
- Checked that inventory data, supporting data, and inventory records are saved and stored to facilitate review and provision of needed clarifications in the ICA process.
- Identified methodological and data changes resulting from recalculations and analyze how they affect the overall estimations of national emissions. Make sure these are reported in the final report.
- Performed a completeness check through confirming that estimates are reported for all source categories and for all reported years.
- Checked that data gaps that result in incomplete estimations of source category emissions are documented.
- For each source category, compared current inventory estimates to previous estimates in previous models for years that have already been reported in previous national inventories. If there are changes or departures from expected trends, estimates were rechecked.

6.2 Quality assurance

The GHG inventory methodologies, activity data, results and reporting tables of the BURI have been reviewed by an independent international inventory reviewer and the resulting recommendations have been taken into account in the preparation of the current inventory.

In the BURII project, UNDP Global Support Programme provided support for reviewing the GHG inventory. Recommendations included some immediate improvements, which have been incorporated in this report, and other suggestions for future improvements, which will be tackled in subsequent inventories.

Box 3: Quality Assurance through external review undertaken for BURI

- Performed initial checks to determine the completeness of data in the CRF

- Examined procedures and methodologies used from the collection of data to the reported emission estimates (double counting, completeness of years and sources/sinks, key category analysis, QC procedures, assumptions, units, recalculations, etc.).

- Assessed the quality and reliability of the methodology in accordance to established guidelines.

- Detected anomalies/mistakes in activity data.

- Assessed reliability of emission factors used.

- Validated time series consistency and compared with data from previous submissions.

- Identified areas for further improvement and noted possible ways for improving the estimation and the reporting of inventory information.

6.3 Uncertainty analysis

The QA/QC procedure that Lebanon adopted for its GHG inventory in the second BUR did not include uncertainty assessment due to the lack of relevant information to facilitate the uncertainty estimation. Lebanon is trying to improve its transparency in reporting and is aiming to collect required information to complete its uncertainty analysis in subsequent reports.

III. Mitigation policies and actions

As a party to the UNFCCC, Lebanon has made efforts to implement activities that lead to emission reduction based on its capabilities and taking into account its national circumstances. This chapter outlines Lebanon's commitment to address the challenges of climate change in the context of sustainable development and provides information on actions undertaken till 2013 to mitigate anthropogenic emissions by sources and removals by sinks. Information on these mitigation actions and their effects has been documented, to the extent possible, following the guidelines on BUR, including the associated methodologies and assumptions. Wherever possible, information on emissions reductions has been calculated.

Mitigation measures are mainly achieved in the power and forestry sectors. Unfortunately, emission reduction initiatives in the industrial, transport, agriculture and waste sectors are few and not well documented. Therefore, the list of measures reported in this section is not exhaustive, which underestimates the emission reduction that Lebanon is undertaken to combat climate change. Lebanon is committed to improve data collection and management and to formalize institutional arrangements that support the long-term collection, analysis and reporting of information on mitigation actions and efforts to explore co-benefits in more details.

Currently Lebanon has no specific methodology for monitoring the progress of actions described. Consultations with project proponents and main stakeholders helped identify the extent to which each mitigation action was implemented and accordingly, percentages of completion were used to calculate emission reductions achieved. Consequently, capacity building is much needed on the national level to improve monitoring and reporting of sectoral mitigation activities.

The methodology adopted for the calculation of emission reduction of the identified mitigation actions was based on the 1996 IPCC revised guidelines, IPCC good practice guidance and 2003 IPCC guidelines for the LULUCF sector, as already adopted in the preparation of the inventory. Consequently, and similar to how emissions are aggregated in national inventories, emissions reduction levels were also aggregated by sector.

Table 79 and Table 82 present the progress of these measures as per end of 2013. A detailed description of the measures developed and implemented in Lebanon until 2013 including information on objectives and goals, coverage, budget, and GHG reduction potential, is provided in tabular format as per decision 2/CP.17 in Annex VI and Annex VII.

1 Energy

As reported in the national GHG inventory, the majority of Lebanon's emissions are from the energy sector. Energy is a strategic resource for Lebanon as the country is almost completely reliant on the import of oil for energy needs. Therefore, climate mitigation in this sector plays an important role in achieving positive environmental, economic, and social impact through demand side management and cleaner energy production. In 2013, mitigation measures implemented in the energy sector contributed in reducing emissions by 513,063 tonnes CO_2 eq., with the expansion of the solar water

heaters and the replacement of incandescent lamps inducing the most significant emission reductions.

Although renewable energy has not taken yet its proper share in energy production due to physical and regulatory barriers, the government is nonetheless continuing to invest actively in the research, development, and demonstration of clean energy technologies in Lebanon.

Energy mitigation actions are classified into 11 major categories, covering both energy efficiency and renewable energy, as presented in Table 79.

Category	Description
Decentralized Solar PV Installations	Solar PV installations in residences, commercial institutions,
	and industrial facilities for power generation
Solar-Powered Water Pumping	Solar PV installations for agricultural applications and water
	pumping
Solar-Powered Public Street Lighting	Solar PV for public streetlights. Includes addition of new
	poles and replacement of existing poles
Energy-Efficient Public Street Lighting	Replacement of existing HPS and LPS street lamps with LED
	street lamps and the use of photocells and timers
Solar Water Heating	Solar water heating systems in residential, commercial,
	industrial, and public institutions
Certified Green Buildings	Certified green buildings under the BREEAM and LEED
	schemes
Energy Conservation Measures	Implemented energy conservation measures by energy
	audit companies and ESCOS, including measures related to
	lighting, cooling, heating, etc.
Biomass Space Heating	Biomass and pellet stoves for space heating
Other Renewables	Other renewable technologies including wind, hydro,
	geothermal, and others
Other Energy Efficiency	Energy efficiency measures undertaken by the public and
	private sector including energy efficient lighting, equipment,
	and others
Energy efficiency in power plants	Implemented measures such as upgrades and increase
	capacity in thermal power plant to increase efficiency of
	production.

Table 79: Types of energy mitigation measures

Based on the data collected from the Ministry of Energy and Water, private entities, donor agencies and international organizations, a significant number of initiatives are being undertaken in the energy sector. For the purpose of the BURII, A detailed and comprehensive database was designed by the Ministry of Environment to report all the energy-related mitigation actions in Lebanon. The database includes information on implementing body, funding source, budget, timeframe, energy savings and emission reductions for each initiative, which have all been aggregated and compiled in

Table **80** and in reporting tables presented in Annex VI. The database structure and related data collection process have served in further developing the Management and Information System for Climate Action (MISCA) platform that was developed under the UNDP LECB project in partnership with the Ministry of Energy and Water and the EU-funded ClimaSouth. Indeed, MISCA contains a section on collecting information and calculating emission reductions from the implementation of mitigation actions in the energy sector.

Activity	Achieved outcome by 2013	Cumulative reduction of GHG emissions up to 2013*
		(tonnes CO ₂ eq.)
Decentralized solar PV installations	Cumulative energy savings: 3,897,784 kWh	2,811
Solar-powered water pumping	Cumulative energy savings: 91,433 kWh	62
Solar powered public street lighting	Cumulative energy savings: 550,971 kWh	339
Energy-efficient public street lighting	Cumulative energy savings: 245,714 kWh	164
Installation of Solar Water Heaters (SWH)	Cumulative energy savings: 358,650,466 kWh	246,269
Certified green building	Cumulative energy avoided: 1,326,310 kWh	905
Energy conservation measures	Cumulative energy savings: 240,000 kWh	166
Biomass Space heating	Cumulative energy savings: 2,029,000 kWh	1,384
Other renewables	Cumulative energy savings: 28,823 kWh	20
Other Energy Efficiency measures	Cumulative energy savings: 382,579,313 kWh	260,943
Energy efficiency in power plants	-	-
Total known GHG emissions reduced by 201	13	513 063

Table 80: Summar	v of mitigation	activities in	Lebanon ii	n 2013
Table 00. Julilla	y or miligation		LCDUIIOIIII	1 2013

*calculated as the sum of yearly emission reductions achieved through the date of implementation of the action up to 2013 (including 2013)

As presented in Table 80, solar water heaters, which are by far the most developed renewable energy technology in Lebanon, represent 48% of the estimated emissions have been reduced during the reporting period. Indeed in 2013, more than 400,000 m² of solar collector area were installed in the country, further expanding the market of solar water heaters. Other initiative with a high emission reduction is the "3 million Lamp" initiative launched in 2011 by the Ministry of Energy and Water to distribute 3 million CFLs to 1.5 million residential households across the country to replace incandescent lamps. This is estimated to have saved 382 million kWh and 260, 943 tonnes of $CO_2eq.$, representing 51% of reported emission reductions by 2013.

Other activities such as the installations of decentralized PV and wind power, solar water pumping, public street lighting, biomass space heating and other renewable energy activities are being implemented on a pilot and demonstration scales mainly by international organizations with the close coordination and guidance of the Ministry of Energy and Water. This is translated by their

relative low emission reduction potential reported in 2013. The respective implementing agencies are however planning to scale-up these initiatives for more significant energy savings and emission reductions.

The government led activities are mainly related to increasing efficiency in thermal power plants as guided by the Policy Paper of the Electricity Sector and introducing renewable energy in public power production. Most of these activities have started in 2013, resulting in no emission reductions to be reported for 2013. However, it is estimated that these measures can result in a yearly reduction of 1,312,996 tonnes of CO_2 emissions.

Activity	Description	Expected GHG reduction/yr (tonnes CO2eq.)
Zouk ICE 194 MW (HFO) Jiyeh ICE 78.2 MW (HFO)	Construction of new power plants in Zouk and Jiyeh which utilizes the energy in the exhaust gases and the hot cooling water from the engines in order to improve the efficiency of	250,032
DACCPP II 539.2 MW (HFO)	the plant by installation. Construction of an indoor gas turbine plant at Deir Ammar site with Nox control system a mini Hydro unit at the condenser outlet to improve efficiency.	597,849
ZCCPP 33.5MW Upgrade (DO)	Upgrade of design, material and coatings of Zahrani and Deir Amar power plants, which leads to improvement in turbine performance, and increases the overall power output and	177,315
HEO Conditioning Zouk Dower	efficiency of the gas turbine. Improvement of quality of HFO before boiler	156,143
Plant	furnace combustion, which reduces emissions and increases the combustion efficiency.	29,895
PV Beirut River Snake Project	1 MWp solar PV farm built on the top of a river to generate an estimated 1,665 MWh/year.	974
Total		1,312,996

Table 81: Increasing energy efficiency and introducing E in public power production

2 Transport

In 2014, the Ministry of Public Works and Transport (MoPWT) presented to the Council of Ministers the master plan to revitalize the land public transport for passengers. It encloses a set of actions to be implemented on the short and medium terms, shifting the passenger transport demand to mass transit systems. The main actions with direct impact on reducing GHG emissions are:

On the short term:

- Implementation of phase 1 of the rail transportation plan, namely the lane connecting port of Tripoli to the Syrian border.
- Revitalization and restructuring of the operation of public buses inside cities.
- Continuing the development project of traffic management in GBA.
- Improvement of the pedestrian infrastructure.

On the long term:

- Deployment of a Bus Rapid Transit (BRT) on Beirut north and south gates, commuting Jounieh to Jiyeh.

- Development of a mass transit system covering territories all over Lebanon and commuting cities.
- Restructuring the freight transport.

The full implementation of the master plan would eventually induce significant emission reductions. However to date, since no concrete action has been taken yet towards the implementation of the masterplan, no emissions reduction could be quantified and reported in this BUR.

3 Land-Use, Land Use Change and Forestry

In the identification of climate mitigation measures related to Land Use, Land-Use Change and Forestry that have the potential to significantly contribute to emission reduction or sink enhancing, the following main categories are considered:

- Protecting existing carbon reservoirs from losses associated with deforestation, forest and land degradation, urbanization, and other land management practices.
- Enhancing carbon sequestration and expanding carbon stores in forests, other biomass, soils, and wood products (including through reforestation, afforestation, and forest management efforts).
- Reducing emissions of other greenhouse gases, primarily CH_4 and N_2O , from land use interventions on from fire management

This section reviews and updates the mitigation actions published in the first Biennial Update Report in the LULUCF sector (i.e., covering the period 2005 and 2011 as in Table 82) by adding the progress achieved and any new initiative launched in 2012 and 2013 (Table 83). Table 82 reports activities that have been implemented prior to 2012 but whose emission reductions still happen on a yearly basis even after project completion.

Table 83 reports projects are still ongoing for 2012 and 2013 inducing more emission removals or that started in 2012/2013. The methodology adopted for the calculation of CO_2 removals and emission reductions in these projects is described in Annex VII.

Title of mitigation action	Annual GHG removals and emission reductions (Gg CO ₂ eq.)	Type of project
The 40 million forest trees Initiative of the Ministry of Agriculture	N.A.	Reforestation/afforestation
National Physical Master Plan of the Lebanese Territory	N.A.	Forest management and landcover/land use planning
Alleviating barriers for quarries rehabilitation	N.A.	Land restoration
Reforestation on degraded lands	0.49	Reforestation/afforestation

Table 82: Summary of annual GHG removals per type of mitigation project (2005-2011)

Title of mitigation action	Annual GHG removals and emission reductions (Gg CO ₂ eq.)	Type of project
Regaining ecological integrity of forest	0.05	Reforestation/afforestation
Restoration and conservation of sensitive forest areas in Lebanon	0.66	Reforestation/afforestation
Support the national early recovery efforts in restoring a part of the burned Lebanese Forests	0.266	Reforestation/afforestation
Forest for peace project	0.269	Reforestation/afforestation
Reforestation: development of a community forest	0.093	Reforestation/afforestation
Management and sustainable development of forest areas	0.133	Reforestation/afforestation
Reforestation within an integrated forest fire management	1.332	Reforestation/afforestation
Developing Lebanon's National Strategy for forest fire management	N.A.	Fire prevention
Strengthening Lebanese capabilities in forest fire control operations	N.A.	Fire prevention
RISICO system for forest fire forecasting	N.A.	Fire prevention
Total	3.293	

* based on assumptions

In 2012 and 2013, afforestation and reforestation activities were sustained and increased by the Ministry of Agriculture and leader organizations in the country such as the Association for Forest Development and Conservation and Jouzour Loubnan, increasing the total amount of GHG emissions that has been removed from mitigation actions in LULUCF to 18.996 Gg CO₂eq. in 2013 as presented in Table 83 and Annex VII.

Table 83: Summary of achieved removals as per 2013

Title of mitigation action	Cumulative GHG removals and emission reductions by 2013 (Gg CO ₂ eq.)		Type of project
Development and implementation of pilot landscape restoration plans		0.646	Reforestation/afforestation
AFDC afforestation/reforestation projects		0.213	Reforestation/afforestation
The Reforestation Initiative of the Ministry of Environment of Lebanon		9.72	Reforestation/afforestation
Reforestation and afforestation activities conducted by Jouzour Loubnan		2.117	Reforestation/afforestation
Lebanon Reforestation Initiative by USAID		6.3	Reforestation/afforestation
Total GHG removal and emission reductions achieved by 2013	1	18.996	

4 Preparation of Nationally Appropriate Mitigation Actions (NAMAs)

In 2013, the Ministry of Environment was appointed by the CoM as the official national coordinator for NAMAs in Lebanon and in 2014, it has established and officiated a mechanism for approving and submitting NAMAs to the UNFCCC NAMA registry.

Following a series of workshops and consultation meetings with stakeholders, 3 NAMA proposals were prioritized in the energy, waste and forestry sectors. The UNDP Low Emission Capacity Building (LECB) Project has supported the Ministry of Environment to develop one proposal on waste management with a waste-to-energy scheme and another on the promotion of fuel efficient and hybrid vehicles in Lebanon. Both have been submitted to the Council of Ministers for approval prior to their submissions to the NAMA registry.

In addition, the Ministry of Environment through the LECB project has engaged with the Ministry of Agriculture to develop a forestry NAMA for the implementation of the 40 million trees programme of the Government. Capacity building sessions and technical support have been provided through the EU Climasouth project to the MoA team and the NAMA is in its final stages of development.

These NAMAs represent an opportunity for sustainable development for Lebanon, and at the same time an opportunity to reduce GHG emissions. Indeed, they provide a prospect to provide access to appropriate and affordable transport modes, to provide sustainable solutions to the country's waste and energy crisis and to preserve and increase Lebanon's green cover. The NAMAs will also provide the conditions for income generation, new business opportunities and enhanced private sector involvement.

5 Information on international market mechanisms

The Ministry of Environment has been appointed Designated National Authority for CDM projects in 2006 and 7 projects have been approved by the CDM Executive Board with the total potential of CER generation of 91,721 CERs every year. The table below provides details on these projects.

Table 84: CDM project in Lebanon

Project name	Project proponent	Potential CO ₂ savings per year
Thermal Solar Plant Project at Zeenni Trading Agency; Bsarma El Koura, Lebanon	Zeenni Trading Agency	1,685 tonnes CO₂eq
The Lebanese CFL Replacement CDM Project – Mount Lebanon	Ministry of Energy and Water (MEW)	20,091 tonnes CO ₂ eq
	Lebanese Center for Energy Conservation (LCEC)	
The Lebanese CFL Replacement CDM Project – South Lebanon	Ministry of Energy and Water (MEW)	14,435 tonnes CO ₂ eq
	Lebanese Center for Energy Conservation (LCEC)	
The Lebanese CFL Replacement CDM Project - North and Bekaa	Ministry of Energy and Water (MEW)	21,281 tonnes CO ₂ eq
	Lebanese Center for Energy Conservation (LCEC)	
The Lebanese CFL Replacement CDM Project – in and around Beirut	Ministry of Energy and Water (MEW)	20,091 tonnes CO ₂ eq
Central, Northern and Eastern Suburbs	Lebanese Center for Energy Conservation (LCEC)	
The Lebanese CFL Replacement CDM Project – in and around Beirut	Ministry of Energy and Water (MEW)	14,138 tonnes CO ₂ eq
Southern Suburbs	Lebanese Center for Energy Conservation (LCEC)	
Programme for Grid Connected Renewable Energy in the Mediterranean Region	Renewable Energy for the Mediterranean (R.E.M.)	Not determined yet
Total potential CO ₂ savings per year		91,721 tCO ₂ eq

IV. Lebanon's transparency framework, institutional arrangements and MRV system

The requirements of the Paris Agreement's article 13 on transparency, which call for a considerable improvement of Parties' Measurement, Reporting and Verification (MRV) systems to reach a mechanism that ensures the periodic flow of needed information while ensuring the transparency, accuracy, completeness, consistency and comparability in all of its components, currently represents a challenge for Lebanon.

As part of enhancing climate information sharing and outreach, several initiatives are being undertaken as described below. Some gaps and challenges still exist to coordinate the initiatives and to enforce their efficient implementation. Lebanon will continue to raise awareness and build capabilities to sustain and gradually improve the implementation of these efforts while addressing specific barriers using incentives or regulatory measures where appropriate.

Minister of Environment decision 99/1

The Minister of Environment's decision 99/1, which was established in April 2013 under the UNDP LECB project, provides an incentive to the private sector (commercial, institutional and industrial enterprises) to report on a voluntary basis their GHG emissions and related activity data to the Ministry of Environment using a MS Excel-based simple tool. As a quality assurance measure, the reported data is verified and certified by an auditor or accountant (from the submitter's side) prior to its submission and is further checked for completeness and consistency by the Ministry of Environment.

This scheme is designed with an awareness raising approach in instigating a reporting culture (GHG emission reporting) by the private sector and to provide a self-tracking tool to be used by participating companies to monitor their GHG emission growth/reduction.

The Ministry of Environment is planning to undertake a systematic and objective assessment of Decision 99/1 to determine its relevance and scalability for better informing climate change policy in Lebanon.

Cooperation between Ministries of Environment, Industry and of Finance

In an attempt to institutionalize data sharing between ministries, the Ministry of Environment has established 2 cooperation mechanisms under the UNDP LECB project:

1. Collection of information from the Ministry of Industry by requesting that basic activity data be included as part of the standard procedures followed for industries to acquire their business licenses. To date, information for the years 2015 and 2016 have been collected in hard-copy format by the Ministry of Industry. While this initiative was successful in guaranteeing activity data collection by the Ministry of Industry in a systematic manner, the data needs to be digitalized in order to facilitate its analysis and use for inventory preparation.

2. Collection of information from the Ministry of Finance on energy and raw material consumption from commercial, institutional and industrial companies. Requested data have been included in the online tax declaration template of the Ministry of Finance and a first round of data collection will be launched starting 2018 for the companies registered at the Large Taxpayer Office of the Ministry of Finance.

The Lebanon Climate Act initiative: reporting of climate change mitigation and adaptation projects

The Lebanon Climate Act (LCA) is an initiative that has been launched in 2016 by the Green Mind NGO in cooperation with the UNDP LECB project, the Central Bank of Lebanon, the Federation of

Chamber of Commerce, Industries and Agriculture and the Ministry of Environment to engage the private sector and non-state actors in climate action. A series of trainings labelled as Business Knowledge Platforms have been conducted in cooperation with the EU ClimaSouth project to support companies in determining their level of engagement, identifying potential partners from civil society and municipalities, and developing implementation, monitoring and reporting plan for their climate actions. To date, around 100 companies and non-state actors have joined this initiate with different level of engagements. In 2017, 10 champion companies have been selected from the LCA members and rewarded for their engagement in a high-level ceremony organized in Beirut.

Transparency law – access to public information

Lebanon's Parliament ratified an access to information law in January 2017 that prescribes that virtually all government entities publish online key documents showing performance indicators such as annual reports, orders and decisions, and office expenditures. The full enactment of the law is pending the issuance of other legislative documents as the establishment of an anti-corruption commission to enforce the law. Nevertheless, the law is a positive step towards improving transparency and public accountability, and work for climate change transparency will benefit from this initiative.

Management and Information System for Climate Action (MISCA)

The Ministry of Environment with the support of the UNDP LECB project liaised with the EUfunded ClimaSouth project to design and develop an online information system to facilitate the exchange of data between Ministries. It is intended to track progress of implementation of Lebanon's Nationally Determined Contribution. The system targets the energy sector as priority sector for the first phase to enhance data sharing between the Ministry of Environment and the Ministry of Energy and Water, and improve the preparation of the energy sector's GHG emission inventory and mitigation action reporting. MISCA is also designed to help the ministry to track its own progress and automatically calculate resulting CO₂ reductions. Quality of data entered in the system is ensured throughout the data entry cycle, by the strict separation of functions associated with the entry, verification and release of data. The management of potentially sensitive or confidential data is also supported. The success of the system lies in the engagement and commitment of the Ministry of Energy and Water, which in turn serves towards meeting the energy sector's emission reduction targets, the country's most significant target of its

The Ministry of Environment aims at expanding the MISCA initiative to include other ministries such as the Ministry of Agriculture and the Ministry of Public Works and Transport in the future, based on the experience and lessons-learned from the first phase. This would be an important move towards enhancing the effectiveness and transparency of Lebanon's Monitoring Reporting and Verification (MRV) of data on climate action.

V. Constraints and gaps, and related financial, technical and capacity needs, including a description of support needed and received

1 Gaps, constraints and needs

Numerous constraints and gaps still exist for Lebanon to report to the required standards and frequency to the UNFCCC. Constraint removal and filling of gaps will be possible in the medium and longer term with continuous national efforts and sustained support from bilateral and multilateral partners and donor agencies.

The main challenge related to the preparation of the BUR is the absence of sustainability of the team responsible for the climate reporting processes at the Ministry of Environment. Therefore, the main need is the provision of permanent financial and administrative support to the Ministry of Environment in order to guarantee the sustainability, continuity and integrity of the information reported in the BUR. This can be ensured through the establishment of the MRV Unit which will be responsible not only for tracking climate change activities and collecting relevant data, but also in identifying needs to strengthen climate reporting processes in Lebanon.

Other significant challenges relate to the preparation of national inventories. Although some progress has been achieved so far in order to create databases, institutionalize data generation and sharing, and develop national emission factors, some challenges surpass the mandate of the BUR project and require significant financial, technical and institutional support to be surmounted. Concrete examples include the empowerment of the Central Administration of Statistics to centralize and manage data, the development of measurement campaigns to better characterize Lebanon's energy systems and vehicle fleet, or even the undertaking of an official census on the population in Lebanon.

In addition, with BUR preparation, new challenges have emerged from the collection and consolidation of information related to existing mitigation actions. These challenges are mainly related to limited availability of data, weak coordination between institutions working in climate change and the difficulty in quantifying emission reductions achieved.

1.1 Gaps and constraints in the BUR preparation process

Lebanon has already submitted 3 national communications to the UNFCCC (1999, 2011 and 2016) and two BURs including the present one. In the wake of the increasing reporting requirements under the UNFCCC (1/CP.16, 2.CP/17), Lebanon's capacities in producing national communications and BURs have been enhanced, relying more on in-house expertise and less on outsourced services. However, the Ministry of Environment is aware that these reporting requirements for developing countries will soon be enhanced with the adoption of the 2018 Rulebook as per the Paris Agreement work programme, and therefore wishes to take the necessary steps to enable readiness for optimized compliance with upcoming guidelines.

Technically, the Ministry of Environment, with the support of UNDP, is able to compile a BUR or a National Communication without setting up a reporting management system. However, such a system will optimize resources invested in the process. The challenges faced in the preparation of Lebanon's second BUR and previous UNFCCC reports are listed in Table 85, along with corresponding capacity building needs. Many of the below-listed challenges have also been identified by the technical team of expert of the BURI ICA process. They have been further formulated to better structure the development of a UNFCCC reporting management system.

Challenge	Description	Needs
Human resources	Currently, the BUR process is being led by the Ministry of Environment, with the	Engage more ministries in the technical preparation of BURs.
	involvement of independent sectoral expert on an ad-hoc basis.	Build technical capacities of public servants
	Little technical involvement is provided by other ministries, where their role is limited	Retain competent experts
	to consultations and validation of information.	Establish a reporting management system that allocates clear responsibilities between ministries and departments
Funding cycles	The Ministry of Environment fully relies on GEF's enabling activities funding window for	Ensure a continuous and sustainable fund for the preparation of BUR
	the preparation of national communications and BURs, and therefore is dependent on the funding cycles made available by GEF. This paralyses the planning stages of BUR preparation.	Integrate the preparation of BURs in ministries existing workplans
Institutional arrangements	The current institutional structure relies on informal mutual agreements for data collection with relevant institutions. However, there is no protocols or	Formalize processes and protocols to institutionalize collection, compilation and verification of activity data and required information
	the sustainability of data collection that often requires heavy administrative processes.	Design and implement a complete national GHG inventory system for activity data and proxy data
IPCC Guidelines	Shifting to 2006 IPCC Guidelines requires additional data collection, recalculation, and technical expertise that may be cumbersome for the inventory team, given	Establish procedures to shift to the 2006 IPCC Guidelines in future GHG inventory procedures including adjustment of historical data
	the time and fund restrictions of the GEF projects.	Improve technical skills of inventory team to adopt adopt the 2006 IPCC Guidelines
		Establish a reporting management system that includes documentation and archiving procedures, QA/QC protocols, and uncertainty management procedures
Enhancing national ownership of reports	The BUR has a limited role in informing national climate policy, as it is still being considered as a reporting requirement instead of policy tracking tool.	Develop a communication plan to policy makers to facilitate integration of BUR and national communication results in national policy making
		Develop a communication plan to the general public to raise awareness on climate change.
Identification of capacity building needs	No methodology or systematic approach is adopted to identify capacity building needs, training, equipment and other resources needed for the preparation of the BUR.	Support to identify gaps and constraints in a more institutional manner, and capacity building needs

Table 85: Challenges and needs for the preparation and communication of BURs

1.2 Gaps and constraints in inventory preparation

Energy

Although a lot if improvements have been done to collect complete data on the fuel combustion in the energy sector, constraints still hinder the completeness and consistency of the process. The main challenges include (1) underdeveloped institutional arrangements data monitoring and collection, (2) the unavailability of specific data and/or the inaccessibility of existing data for adopting tiers 2 and (3) the use of default emission factors from IPCC guidelines instead of Lebanon fuel-specific emission factors. Table 86 presents in detail the gaps related to the inventory preparation of the energy sector.

Gaps	Description
	1. Lack of institutional arrangement for data monitoring and reporting
	2. Absence of the role of the Central Administration of Statistics, Ministry of Transport and Ministry of Energy and Water to develop and activity data
	3. Inconsistency of information between different governmental agencies
Underdeveloped	4. Lack of an energy balance for Lebanon
data collection for the inventory	5. Lack of information on private generation in the industrial, commercial and residential sector
	6. Lack of data on passenger kilometres and on off-road vehicles
	7. Lack of accurate data on fuel combustion in national aviation and navigation
	8. Lack of knowledge to conduct uncertainty assessment
Unavailable and/or	1. Lack of road transport activity data on annual fuel consumption per type of fuel and yearly average vehicle mileage per category
unshared specific data for tiers 2 and	2. Lack of technology-related information per power plant
3 calculations	3. Lack of standardized/centralized data reporting system and protocols for data accessibility.
	1. Lack of Lebanon-specific methodologies using advanced bottom-up approaches for inventory preparation
Use of IPCC default emissions factors	2. Lack of fuel-specific emission factors for Lebanon
	3. Lack of capacity of national laboratories to calculate carbon content of fuels

Table 86: Gaps related to the preparation of GHG emissions in the energy sector

Industrial processes

The main gap of the industrial processes GHG inventory preparation is related to not estimating emissions from consumption of Halocarbons and SF_6 . These estimations, if included in the national GHG inventory, would probably significantly change Lebanon's currently estimated total net emissions due to the very high global warming potential of Halocarbons. The National Ozone Unit in Lebanon will publish a survey on consumption of Halocarbons in Lebanon in the very near future as part of the project "Enabling Activities for the Early Ratification of the Kigali Amendments" funded by the Multilateral Fund Secretariat.

Industrial processes in Lebanon is one of the national inventory chapters with a lot of potential for improvement. However, due to its insignificance in the overall national emissions scheme, time and budget have not yet been prioritized for these improvements. The latter include an adjustment of historical data on lime production, a detailed survey on production of asphalt roofing and use of road paving material, the initiation of regular preparation and publishing of surveys on all the food and drinks subcategories (beer, wine, fish, meat, poultry, bread, cakes and biscuits, coffee beans, sugar, margarine and animal feed) as most of the numbers used so far in Lebanon's inventories are based on assumptions and estimations.

Finally, the current BUR does not include information regarding Solvent and Other Product Use due to lack of detailed methodology for inventory preparation for this sector in the 1996 and 2000 IPCC guidelines as well as the lack of published activity data. This category covers mainly NMVOC emissions resulting from the use of solvents and other product containing volatile compounds. It also includes evaporative emissions of greenhouse gases arising from other types of product use such as N_2O emissions from medical use. It is however believed that these emissions from categories considered under this sector (i.e. paint, application, degreasing and dry cleaning, printing and publishing, degreasing and dry cleaning, chemical product manufacture and processing) would not be significant in the context of the national GHG inventory.

Agriculture

The calculation of emissions from the agriculture sector necessitates a solid scientific base of data and parameters, which is a challenging issue in Lebanon. The gaps and constraints reported in BURI are still valid for the preparation of BURII, namely the scattering and inconsistency of data throughout agencies, the lack of institutional arrangements for data sharing as well as the inadequacy of default emission factors to local conditions. Some of the data challenges were overcome in the BURII, however technical and capacity building needs related to the preparation of the inventory in the agriculture sector are still a necessity, as presented in Table 87.

Gaps or constraints	How it was tackled in BURII	Recommendation
Data on imported beef: lack of detailed archiving from BUR I on data source and related contacts at the syndicate of beef importers; the Ministry of Agriculture does not collect this data.	Imported beef not included in national GHG inventory of BUR II, and recalculations performed for the entire time series covered in the inventory.	Develop appropriate institutional arrangements with the Ministry of Agriculture to make data on imported beef readily available for every round of inventory.
Data on Swine, Camels, Horses, Mules, Asses: not available at the Ministry of Agriculture.	Obtained from FAOSTAT, considered a secondary source of information.	Provide support to the Ministry of Agriculture in order to gather and regularly publish data on Swine, Camels, Horses, Mules, Asses.
Data on nitrogen fertilizer consumption: not available at the Ministry of Agriculture, not segregated by chemical at the Lebanese customs. Assumption that all imported fertilizer is consumed nationally.	Extrapolation from data series made available from BUR II.	Provide support to the Ministry of Agriculture in other to gather and regularly publish data on Nitrogen fertilizer consumption.
Data on crop production: available at the Ministry of Agriculture only until the year 2009.	Obtained from FAOSTAT, considered a secondary source of information.	Provide support to the Ministry of Agriculture in other to gather and regularly publish data on crop production.
Fraction of manure nitrogen per	Fractions adopted from BUR I	Provide support to the Ministry of Agriculture

Table 87: data-specific gaps related to the preparation of GHG emissions in the agriculture sector

manure management system: no survey exists for accurate estimations.	based on expert judgment.	in order to perform a complete survey of manure management systems in Lebanon.
Burning of agricultural residues: the assumption is that it does not occur in Lebanon, at least during the period covered by the inventory. However, no published study confirms this information.	Burning of agricultural residues was considered not occurring in the BUR II based on expert judgement.	Provide support to the Ministry of Agriculture in order to perform a complete survey on disposal of agricultural residues.
Fraction of crop residue removed from field: no survey exists for accurate estimations.	Fractions adopted from BUR I based on expert judgment.	Provide support to the Ministry of Agriculture in order to perform a complete survey on disposal of crop residues removed from fields.

Land use, land use change and forestry

The gaps in the preparation of the LULUCF inventory in relation to emission and removals factors are related to the unavailability of country specific data (and the use of Tier 1 IPCC default assumptions that the net change is zero. More specifically, emission/removals for the subcategories Land converted to Croplands and Land converted to Grassland were not estimated due to lack of data. Accordingly, the notation key NE (not estimated) was used. Further data (when available) on areas of grasslands along with their management systems (e.g. status of grazing,) can help in providing new insights on their level of contribution in GHG emissions or removals in the future. Also, alternatives to estimate emissions and removals from the land use subcategories and pools declared as "Not Estimated" in this report could be made available in future inventory submissions. These include the design and implementation of an operational mechanism for continuous spatial monitoring and assessment of land subcategories with the combined use of satellite remote sensing and Geographic Information System (GIS) data in addition to data published by official reports. This, however, requires the direct coordination of relevant ministries (i.e., Ministry of Agriculture and Ministry of Environment).

Waste and wastewater

Similar to the other sectors, the challenges in the calculation of waste and wastewater related emissions are mainly linked to the availability of complete and accurate data on waste and wastewater generation as well as adopted management and treatment practices.

Table 88 summarizes the gaps identified in the calculation of the GHG emissions from the waste sector.
Gaps	Description
Estimation of population and waste generation rate	 Population is based on data from CAS that is only available for 2 years. No census on Lebanese population is available Studies on waste generation analysis conducted are outdated
Methodology of quantification of waste and wastewater	 Waste and wastewater generation rates are not based on quantitative exercises and are often estimated based on population counts. Industrial wastewater is not clearly addressed and related information is missing
Estimation of methane generation and recovery rates	 Data on methane recovery is not made available from all landfills and for all reporting years Methodology of 1996 Revised IPCC guidelines does not take into account the lag time between waste disposal and methane generation
Estimation of wastewater disposal practices	 No information is documented on the methods used to disposed of wastewater in urban versus rural areas
Absence of national emission factors	 The use of default emissions factors might under or overestimate emissions from waste and wastewater generation and disposal

Table 88: Gaps for the calculation of GHG emissions from the waste sector

1.3 Gaps and constraints in capturing and reporting of mitigation actions

Mitigation measures are mainly achieved in the power and forestry sectors, as reported in section III. Unfortunately, emission reduction initiatives in the industrial, transport, agriculture and waste sectors are few and not well documented. Therefore, there are gaps in the list of measures reported, which leads to believe that the emission reductions achieved by Lebanon are underestimated as reported in the present BUR. Consequently, capacity building is much needed on the national level to improve monitoring and reporting of sectoral mitigation activities. While some improvements have been brought in the second BUR compared to the first one, especially in terms of identifying information related to the progress of implementation of some actions in the energy sector, more capacity building is needed to address the challenges presented in Table 89 and Table 90.

Table 89: Data gaps in preparing mitigation actions for the other sectors

Gaps and constraints – other sectors			
Transport	 Limited data available on the progress of activities related to public transport initiatives Absence of clear workplan and indicators for the Government's Transport Strategy Difficulty in estimating the climate-change related component, achievements and budget of transport development projects Difficulty in estimating emissions reductions from the complete or partial implementation of the Transport Strategy, and specifically the revitalization of public transport 		
Agriculture	 Limited data available on cropland management, livestock and manure management, and good agricultural practices Difficulty in estimating the climate-change related component, achievements and budget of agriculture development projects Absence of information on the implementation progress of the Ministry of Agriculture's 5-year plan 		
Industrial	 Absence of a strategy to improve the environmental performance of the industrial sector, including reduction of emissions from industrial processes 		

Processes	- Limited data on the implementation of industrial activities with a co-benefit to reduce GHG emissions
Waste	 Slow progress of waste and wastewater management activities in Lebanon Difficulty in estimating the climate-change related component, achievements and budget of waste and wastewater management projects

Table 90: Data gaps in capturing and reporting mitigation actions for the energy sector

	Data gaps – Energy Mitigation actions
Decentralized Solar PV Installations	 Data collected for PV installations is a result of a survey conducted by UNDP-DREG project. The survey covers a big share of the market, yet it is not guaranteed to be covering 100% of the real installations. Data collected on PV installations involves currently active companies, but does not include companies that were but are no longer in business. These companies might have good contribution to installations performed prior to 2012. Donor-funded PV projects include CEDRO implementations only. Other donor-funded installations that might have taken place are accounted for within the privately-installed cumulative values. PV Installations taking place before 2012 are available in cumulative numbers. Thus the average emission factor and budget estimate for the year 2010 and 2011 are used.
Solar-Powered Water Pumping	 Donor-funded PV pumping projects include USAID and UNDP implementations only. Other donor-funded installations that might have taken place are accounted for within the privately-installed cumulative values
Solar-Powered Public Street Lighting	 Donor-funded PV Public Street Lighting projects include CEDRO, UNIFIL, and Live Lebanon implementations only. Other donor-funded installations that might have taken place are accounted for within the privately-installed cumulative values.
Solar Water Heating	 Data collected for SWH installations is a result of a survey conducted by LCEC. The survey covers a big share of the market, yet it is not guaranteed to be covering 100% of the real installations. Data collected on PV and SWH installations involves currently active companies, but does not include companies that were but are no longer in business. These companies might have good contribution to installations performed prior to 2012 Donor-funded SWH projects include CEDRO, SIDA, and Italian Cooperation implementations only. Other donor-funded installations that might have taken place are accounted for within the privately- installed cumulative values.
Energy Conservation Measures	 Data collected on energy audits and energy conservation measures involves the largest companies in the market. There are definitely initiatives undertaken by the facility owners or by third parties that cannot be quantified Budget related to energy saving measures cannot be made available.
Biomass Space Heating	 For pellet stoves, it is not clear what these stoves are replacing, thus the emission factor used is for EDL and private generators. In some cases, these stoves might be replacing diesel heaters.
Other Renewables	- Other renewable energy installations done by private sector could not

-	be quantified. Yet they are expected to have minor effect on the cumulative values. For the micro-hydro installation, the average saving of 2,000 kWh per installed kW is a rough estimate based on international market data. No similar data is available for these systems in Lebanon.
Other Energy Efficiency -	For photo sensors, savings are calculated assuming all photo sensors and timers are installed immediately and properly maintained. In fact some were installed at a later stage, and others are not properly maintained, which reduces their performance and saving potential.

1.4 Gaps and constraints in reporting of finance and capacity building needs and support received

Reporting of financial support needed and received

Lebanon has yet to enhance its capacity to undertake MRV of support with respect to mapping domestic and international climate finance flows, clarifying the support received, identifying support gaps, enhancing related decision-making and ultimately supporting Lebanon's NDC implementation. Lebanon is still not able to provide a comprehensive report on finance needs and received, due to the challenges presented in Table 91.

Data collection	Climate finance monitoring is challenging mainly because of untraceable finance flows, and the lack of disaggregated data. This is the case for all finance flows between international donors, central and subnational government, NGOs and the private sector Furthermore, when data is available, it is not disaggregated per source of funding, the type of support (grant, loan, concessional loan, guarantee etc.), percent of disbursement, etc.
Institutional	The needed arrangements to formulate and communicate climate finance in
arrangements	Lebanon are not established. There is little awareness in the institutions on the
	importance of tracking finance and its relationship to efficient policy- making.
Definition and	There is neither definition of climate finance nor an understanding of estimating the
methodology	incremental cost/budget of climate change mitigation and adaption benefits. This in
synchronization	turn affects the understanding of climate finance across different national
	institutions and stakeholders and hinders the coherence and consistency of climate finance information.
	Moreover, there is no established methodology for identifying and tracking
	capacity-building or technology transfer related to climate change.
Progress tracking	No indicators exist to assess the effectiveness of climate finance; progress towards lowering greenhouse gas emissions or increasing resilience is not being tracked. Therefore, it is challenging to assess the effectiveness of climate finance.

Table 91: Challenges hindering complete and transparent climate finance reporting

Efforts are underway to define climate finance and devise a process to establish a system for MRV of support received (including capacity-building and technology transfer) and their respective financing and linkages to NDC goals.

Reporting of capacity building needed and received

There are many improvements in the present BUR related to reporting of capacity building needs. They are due to a better understanding of the BUR requirements, the improved compilation activities and the ICA and FSV processes.

1.5 Gaps and needs in establishing of a national MRV system

Lebanon has not yet a defined a comprehensive MRV framework for mitigation and adaptation actions and policies due to the technical constraints described before as well as weak institutional arrangements, which hinder the country's readiness to comply with Modalities, Procedures and Guidelines (MPGs) under the Paris Agreement. Various efforts undertaken by different national ministries, local governments and private sector have had limited impact in efficiently assessing implementation progress of NDC and informing national climate policy.

Lebanon's first BUR stressed the necessity for the creation of a MRV unit to overcome these challenges. Following the development of Lebanon's NDC, and the entry into force of the Paris Agreement, the envisaged MRV unit has further been conceptually developed into an MRV Coordinating Entity (MRVCE), which still needs to be established.

Concretely, the MRVCE will primarily enable the measuring of the progress of climate policies, through NDC goals, will be responsible in periodically evaluating the national transparency framework's effectiveness and will also assist in identifying support needed. In addition, the MRVCE will coordinate all reporting activities under the UNFCCC and progress on NDC implementation. In addition, it will build capacities of national institutions to implement transparency-related activities and procedures.

There is also a need to develop a web based knowledge management platform targeted to relevant institutions to centralize and publish climate information, while building on existing systems. The platform can host 1) the GHG inventory system, 2) the tracking system for climate action (NDC intranet) and 3) adopted tools and methodologies.

Lebanon needs support in elaborating the MRVCE's detailed design, including proposed governance structure, legal and institutional arrangements as well as operating cost-analysis, and possible financing sources. Therefore, Lebanon will be seeking support from the GEF under the Capacity Building Initiative for Transparency funding window.

2 Information on support received

Climate finance from multilateral and bilateral sources plays an important role in advancing climate action in Lebanon. It has contributed to the implementation of sectoral policies and programs and supported initiatives from governmental and non-governmental institutions. Therefore, having a clear understanding of these finance flows is crucial to assess outcomes of support received and optimize available and future climate resources.

The Ministry of Environment is the National Designated Authority to the Green Climate Fund (GCF). Lebanon has not yet submitted proposals to the GCF, but the NDA has issued a no-objection letter for the IFC green bond cornerstone programme. Lebanon is currently seeking support from the GCF to prepare its National Adaptation Plan (NAP) through the readiness programme and is working with the UNDP-UNEP NAP-GSP programme to prepare and submit the proposal.

Building on the progress of UNFCCC negotiations related to transparency of reporting on climate finance, and based on recommendations from the ICA process, Lebanon has attempted in the present BUR to gather readily available and trusted information, in a format that, if developed and improved, could inform the global stocktake more easily. Given the gaps and constraints previously mentioned related to reporting on support received; only information on climate related projects that have been approved by donors and whose beneficiary is the Ministry of Environment since the submission of BURI has been considered in this report (Table 92).

It is worth nothing that the tables below do not provide a comprehensive overview of the financial, technical and capacity building support received in relation to climate change in the country. It is envisaged that future BURs will allocate time and funding to expand the scope of reporting on support received to other ministries and institutions.

Donor	Project/initiative	Expected outputs	Budget [*]	Timeframe
Global Environment Facility	Enabling activities for the preparation of Lebanon's Second Biennial Update Report to the UNFCCC	To fulfill decisions 1/CP.16 and 2/CP.17, which request non- Annex I Parties to submit BURs	USD 352,000	2016 – 2018
European Union, Australian Government, German Government	Complementary support under the Low Emission Capacity Building programme	 Enhanced NDC implementation and synchronization with SDGs Increased mitigation investment by the public and private sectors Gender mainstreamed in NDC 	USD 802,500 - fund allocation	2018 – 2019
European Union – ClimaSouth project	Formulating a MRV Framework for Support Received	 To strengthen Lebanon's capacity to undertake MRV of support received To identify all climate change related projects in Lebanon, their respective financing and linkages to NDC goals To verify if support identified is being disbursed in priority mitigation and adaptation areas to achieve Lebanon's NDC. To improve Lebanon's climate finance reporting to the UNFCCC as per the Paris Agreement, to better inform the global stocktake and further reconcile support provided and received 	Euros 40,000 – technical assistance	2017 - ongoing
European Union – ClimaSouth project	Management and Information System for Climate Action (MISCA)	- Create an internet portal dedicated to the Ministries of Environment and Energy that facilitates sharing and access to activity data, policy information,	Euros 60,000 – technical assistance	2017 - ongoing

Table 92: Financial support received by the Ministry of Environment since the submission of the first BUR

		related actors and finance. - Automatically generate results of CO ₂ emitted and avoided - Establish institutional arrangements to anchor MISCA in the national transparency framework		
European Union – ClimaSouth project	NAMA support	 Drafting of transport and forestry NAMAs is completed 	Euros 30,000 - technical assistance	2017 – ongoing
European Union – ClimaSouth project	Engaging the Lebanese private sector in climate action – support to the Lebanon Climate Act	 Establish Business Knowledge Platforms to enhance capacities of private sector on implementing climate action Publish business manual on how to create value from climate change published 	Euros 60,000 – technical assistance	2016 – 2017
GIZ	(Adaptation to Climate Change in the Water Sector in the MENA Region (ACCWAM)	-to mainstream adaptation to climate change in water policies and actions plans in the region, including Lebanon	NA	2011-2017

In terms of capacity building, experts from ministries, governmental agencies and from academic institutions have been nominated to participate in trainings related to climate change and to join the UNFCCC Roster of Expert. Consequently, the country has now a team of experts in various fields (namely energy, agriculture, LULUCF, waste and transport) that have an improved knowledge of the national inventories, national communications and BURs. This has contributed in improving the preparation and compilation of the present GHG inventory. However, unfortunately, Lebanon does not have the required resources to plan and implement a comprehensive training programme to develop the capacities of specialists in different ministries and agencies who should be fully involved in the BUR process. Initiatives in this sense remain sporadic and subject to the availability of funds.

Table **93** presents the participation of representatives of Lebanon in capacity building events related to climate change since the submission of the first BUR.

Donor	Title of Workshop	Objectives	Date and place	Capacity building indicator
UNFCCC Secretariat	Hands on training on the preparation and reporting of mitigation actions (Asia-Pacific and Eastern European regions)	Enhance preparation and implementation of mitigation actions and provision of knowledge on reporting information in national	September 2017 Siem Reap, Cambodia	1 national expert trained

communications and biennial update reports

GIZ - FAO	GHG inventories for the energy and AFOLU sectors as a basis for updating and monitoring NDCs	Enhance capacities of GHG inventory experts for a more transparent inventory system Share success stories and lessons learned from inventory preparation and sensitize on the importance of sound data collection Train experts on inventory methods	August 2017 Rome, Italy	3 national experts trained
UNFCCC Secretariat	Regional training workshop on national adaptation plans (NAPs) for Asia	Enhance the capacity of developing countries to address medium and long-term adaptation needs through the formulation and implementation of NAPs	June 2017 Manila, the Philippines	1 national expert trained
GIZ	Good-practice workshop on the BUR and ICA process for Non-Annex I countries	Enhance the understanding of the BUR and ICA process, share good practices and lessons learned, and discuss how those experiences can be applied for the improvement of MRV systems in general.	April 2017 Berlin, Germany	1 national expert trained
UNDP-UNEP National Adaptation Plan - Global Support Programme (NAP-GSP)	Supporting countries to advance their national adaptation plan (NAP) process	Improve the understanding of the NAPs process; take stock of the existing guidance and tools and exchange information on the mechanisms and options for supporting NAPs.	April 2017 Amman, Jordan	1 national expert trained
UNFCCC Secretariat	Workshop on the Building of Sustainable National Greenhouse Gas Inventory Management Systems, and the use of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories for the Asia-Pacific and the	Enhance capacities of national experts to adopt the 2006 IPCC guidelines for national inventories	September 2016 Incheon, Republic of Korea	1 national expert trained

	Eastern European Regions			
Consultative Group of Experts on National Communications from Parties not included in Annex I to the Convention	Regional training workshop for the Asian and Eastern European region on the preparation of biennial update reports from non-Annex I Parties	Enhance the capacity of national experts from non-Annex I Parties in understanding and applying the "UNFCCC biennial update reporting guidelines for Parties not included in Annex I to the Convention"	April 2016 Colombo, Sri Lanka	1 national expert trained
(CGE)		convention		

VI. Other information considered relevant to the achievement of the convention

With a view to facilitating the integration of climate change considerations into relevant social, economic and environmental policies and actions in accordance with Article 4, paragraph 1 (f), of the Convention, Lebanon has undertaken steps various initiatives with schools and with the private sector, namely the development and dissemination of a teacher's guide on climate change and a guide for businesses in Lebanon to create value from climate change.

1. Teacher's guide on climate change for schools in Lebanon

The guidebook aims to provide teachers in schools across Lebanon with a wide range of activities and exercises which can be integrated into their teaching subjects and classes in order to enhance student knowledge and skills on climate change. The guidebook was developed with the aim to engage both teachers and students in climate change through an approach that emphasizes critical thinking, interactive dialogues, practical and solutions-based learning, and creative projects. The activities and exercises have been developed with particular focus on the impacts, challenges and opportunities regarding climate change in Lebanon, and include national statistics, data, facts and case studies on climate change in Lebanon. They cover a wide range of topics for primary, middle and secondary cycles across both the scientific and socio-political aspects of climate change.

The Ministry of Environment has engaged in a series of awareness activities to disseminate the guidebook to schools and has partnered with UNESCO and the Ministry of Education to develop the Arabic version of the guidebook and integrate it officially in the Lebanese curriculum.

2. How to create value from climate change: a guide for businesses in Lebanon

The guidebook, primarily intended for businesses in Lebanon, has been developed as part of the Lebanon Climate Act (LCA) initiative with support from the EU Cimasouth project and the UNDP LCEB project. The guidebook provides information for businesses to gain a better and deeper understanding of the risks that climate change poses to the modern world and capitalise on opportunities arising from climate change. It is a tool to help companies develop and implement plans to effectively take part in climate change action on the scale of each business. Non-state actors can also benefit from the guidebook to design, implement and monitor their climate actions.

References

ACAPS (2013). Syria Needs Analysis Project- Lebanon Baseline Information. Available: http://www.acaps.org/en/pages/syria-snap-project [Accessed 2 December 2014].

AFDC/MoE (2009). Lebanon's National Forest Fire Management Strategy. Mitri G. (Ed.). Association for Forest Development and Conservation, Ministry of Environment. Beirut, Lebanon.

Al-Hassan, R. (2011). A National Consultancy on the Fertilizer Supply Chain in Lebanon. Survey Report submitted to Food and Agriculture Organization (FAO).

ASHRAE (2009). Standard Benchmark Energy Utilization Index. Retrieved July 12, 2017, from http://cms.ashrae.biz/EUI/

Asmar, F. (2011). FAO Country Pasture/Forage Resource Profiles: Lebanon. Available: http://www.fao.org/ag/AGP/AGPC/doc/counprof/lebanon/lebanon.html [Accessed 28 November 2014].

BATCO (2013). Annual reports of Tripoli dumpsites. December 2013.

Beirut port statistics (2014). Annual number of incoming ships from 2009 to 2013. Retrieved from www.portdebeyrouth.com. (Last accessed, April, 2014).

BREEAM (2017). Explore the data behind BREEAM projects. Retrieved July 10, 2017, from http://www.breeam.com/projects/explore/buildings.jsp

Bsaibes, J. (2017). Energy Audit Implementations. Personal communication with Mr. J. Bsaibes on July 6, 2017.

CAS (2014). Monthly Data Per Year From 2000 To 2012. Central Administration of Statistics. Retrieved from www.cas.gov.lb

CDR (2006). Municipal Solid Waste Management in Lebanon. Council for Development and Reconstruction.

CDR (2014). Personal communication. Council for Development and Reconstruction. October 2014.

CDR and Ramboll (2012). National Strategy for Solid Waste Management in Lebanon. Feasibility study – Phase 1.

CEDRO (2015). Sustainable Street Lighting: A Guide to Efficient Public Street Lighting for Lebanon (Rep.). Beirut: CEDRO-UNDP.

CEDRO (2017). Renewable Energy Implementations. Personal Communication Dr. Hassan Harajli, July 10, 2017.

Diab, R. (2017). Energy Audit Implementations. Personal Communiocation Mr. Ronal Diab on July 25, 2017.

EastMED (2012). Report of the FAO EastMED Support to the Fishing Trials Carried Out of the South Lebanese Coasts. Retrieved from www.faoeastmed.org

El Fadel, M., and Sbayti, H. (2000). Economics of mitigation greenhouse gas emissions from solid waste in Lebanon. Waste Management and Research (18), 329-340.

Electricité du Liban (2012). Assistance for the Corporization of EDL. July, 2012.

El-Hage (2014). Personal communication with captain Said El-Hage. Environment Affairs Manager, Middle East Airlines.

FAO (2011a). Lebanon Country Pasture/Forage Resource Profiles. Food and Agriculture Organization. Author: Fady Asmar.

FAO (2011b). FAOSTAT- Lebanon- Land Use. Food and Agriculture Organization Statistics.

FAO (2017). FAOSTAT- Lebanon- Food and Agriculture Organization Statistics.

Hajj Shehadeh, N. (2017. Database on Energy Audit Implementations. Personal Communication Mr. Nader Hajj Chehadeh on June6, 2017

IEA (2017). Fuel imports from 2005 to 2014: International Energy Agency.

IPCC (1995). Climate change 1995, the science of climate change. IPCC second assessment report, United Nations Environmental Program.

IPCC (1997). Revised 1996 IPCC guidelines for national greenhouse inventories. Houghton J.T., Meira Filho L.G., Lim B., Tréanton K., Mamaty I., Bonduki Y. et al. (Eds). London: Intergovernmental Panel on Climate Change WGI technical support unit.

IPCC (2000). Good practice guidance and uncertainty management in national greenhouse gas inventories. Pennman J., Kruger D., Galbally I., Hiraishi T., buruhani N., Emmanuel S. et al. (Eds). Japan: Institute for Global Environmental Strategies.

IPT (2014). Survey on fuel consumption by end user. IPT Energy Center: Beirut

Jordan, D., and Kurtz, S. (2012). Photovoltaic Degradation Rates - An Analytical Review (NREL/JA-5200-51664, Publication). NREL. Retrieved June 28, 2017, from http://www.nrel.gov/docs/fy12osti/51664.pdf

LACECO (2013), Annual reports of solid waste management.

LCEC (2012a). Net Metering in Lebanon. Lebanese Center for Energy Conservation. UNDP, September 2012.

LCEC (2012b). The Residential Solar Heaters Market in Lebanon. Lebanese Center for Energy Conservation. UNDP, September 2012.

LCEC (2013). National Milestones for Energy Efficient Lighting and Solar Water Heaters. Lebanese Center for Energy Conservation. UNDP, GEF, Hellenic Aid. July 2013.

LCEC (2016). NEEREA - Statistics & Results. Retrieved July 10, 2017, from http://www.lcec.org.lb/en/NEEREA/StatisticsResults

LCEC (2017a). Energy data. Personal Communication Dr. Sorina Mortada, S. on June 28, 2017.

LCEC (2017b). Energy data. Personal Communication Mr. Pierre el Khoury on July 25, 2017.

Mansour, C. (2011). Evaluating impact of electrified vehicles on fuel consumption and CO₂ emissions reduction in Lebanese driving conditions using onboard GPS survey. Mansour C., Zgheib E., Saba S., Journal of Energy Procedia, Elsevier, 2011, vol. 6, pp. 261-276.

MoA (2010a). Ministry of Agriculture. Lebanon, Strategy 2010-2014. Retrieved from http://www.agriculture.gov.lb/Arabic/AboutUs/Strategy_2010_2014/Pages/default.aspx

MoA (2010b). Ministry of Agriculture, Lebanon. Agriculture Census 2010. Retrieved from http://www.agriculture.gov.lb/Arabic/DataAndAgriStatistics/OverallAgriStatistics/Pages/defaul.aspx

MoA/FAO (2005). National Forest and Tree Resources Assessment 2003-05 (TCP/LEB/2903). Food and Agriculture Organization. Working Paper 95, Forest Resources Assessment, Forestry.

MoA/FAO (2015). Global Forest Resources Assessment 2015. Country Report: Lebanon, Forestry Department, Rome. Food and Agriculture Organization.

MoE (2010). Country Report on the Solid Waste Management in Lebanon. Ministry of Environment.

MoE (2012). Lebanon's National Report to the United Nations Conference on Sustainable Development - RIO+20. Lebanon: Wide Expertise Group. Ministry of Environment.

MoE (2017a). Petroleum Coke Imports to Lebanon. Personal Communication Mrs. Viviane Sassine, 4 July, 2017.

MoE (2017b). Lebanon Recycling rates. Personal Communication Mr. Bassam Sabbagh, 14 April 2017.

MoE (2017c). Grid Emission Factors for Lebanon. Personal Communication Mrs. Lea Kai Aboujaoude, 21 July, 2017.

MoE/EU/UNDP (2014). Lebanon Environmental Assessment of the Syrian Conflict and Priority Interventions. September 2014.

MoE/UNDP (2015). Optimal Renewable Energy Mix of the Power Sector by 2020: Investment Cost Implications on Lebanon. Ministry of Environment. Beirut, Lebanon.

MoE/UNDP/Ecodit (2011). State and trends of the Lebanese Environment 2010. Beirut: Ministry of Environment.

MoE/UNDP/ELARD (2011). Provision of consultancy services for the Preparation of a Master Plan for the Closure and Rehabilitation of Uncontrolled Dumps throughout the country of Lebanon.

MoE/UNDP/GEF (2011). Lebanon's Second National Communication (SNC) to the United Nations Framework Convention on Climate Change (UNFCCC).

MoE/UNDP/GEF (2015). National Greenhouse Gas Inventory Report and Mitigation Analysis for the Energy Sector in Lebanon. Beirut, Lebanon

MoE/UNDP/GEF (2016). Lebanon's Third National Communication report to the UNFCCC. Beirut Lebanon

MoE/UNEP (2013). Environmental Resources Monitoring in Lebanon Project, Analysis of the Current Land Use and Socio-Economic Activities in the Coastal Zone (to be published). Ministry of Environment.

MoE/UNEP/GEF (2017). National Implementation plan on Persistent Organic Pollutants. Section 5- assessment of industrial POPs and unintentionally released POPs. Lebanon

MoE/URC/GEF (2012). Lebanon Technology Needs Assessment Report for Climate Change. Ministry of Environment. Beirut, Lebanon.

MoEW (2010a). National Water Sector Strategy. Ministry of Energy and Water. Beirut, Lebanon.

MoEW (2010b). Policy Paper for the Electricity Sector. Ministry of Energy and Water. June 2010.

MoEW (2015). Public Street Lighting Initiatives. Personal communication Mr. Sarkis Farah on 12 March, 2015.

MoEW (2016a). Fuel import data sheet 2012-2016. Ministry of Envergy and Water, Directorate General of Petroleum.Beirut, Lebanon.

MoEW (2016b). Personal Communication. Ministry of Envergy and Water. Beirut, Lebanon.

MoEW/LCEC (2011). The National Energy Efficiency Action Plan for Lebanon NEEAP 2011-2015. Ministry of Energy and Water. Beirut, Lebanon.

MoEW/LCEC (2016a). National Energy Efficiency Action Plan 2016-2020. Ministry of Energy and Water, Lebanese Center for Energy Conservation, 2016.

MoEW/LCEC (2016b). National Renewable Energy Action Plan 2016-2010. Ministry of Energy and Water, Lebanese Center for Energy Conservation, 2016.

MoEW/UNDP/GEF (2016). Solar PV Status Report for Lebanon 2016. Small Decentralized Renewable Energy Power Generation (DREG) Project, Ministry of Energy and Water, Lebanon.

MoF (2016). Credit analysis report on Lebanon. Ministry of Finance, 2016.

Mol/ALI/UNIDO, (2010). The Lebanese Industrial Sector: Facts and Findings – 2007. 71pp.

MoIM (2017). Database of vehicle fleet characteristics 2015. Ministyr of Interior and Municipalities, Traffic, Trucks and Vehicles Management Authority. Beirut, Lebanon.

MoInd (2015). Industrial sector database. Ministry of Industries, 2015

Sfeir, JP. (2017). Pellet Stove Reference Work. Personal Communication Mr. Jean Paul Sfeir on July 8, 2017.

SWEEP-Net (2010). Country Report on the Solid Waste Management in Lebanon.

SWEEP-Net (2014). Cost Assessment of Solid Waste Degradation due to waste Management Practices in Beirut and Mount Lebanon

Tripoli port statistics (2014). Annual number of incoming ships from 2005 to 2009. Retrieved from www.portdetripoli.com. (Last accessed, April, 2014).

UNDP (2015). Solar-Powered Pumping in Lebanon: A Comprehensive Guide on Solar Water Pumping Solutions. Beirut: UNDP.

UNECE (2013). United Nations Economic Commission for Europe. ForFITS Model - Assessing Future CO_2 Emissions.

UNECE (2014). United Nations Economic Commission for Europe. Retrieved from www.unece.org. (Last accessed, July, 2014).

UNEP (2016). Solar Water Heaters' Market Evaluation: Case Study of Lebanon 2015. Beirut: UNEP.

UNHCR (2013). Syrian Refugees in Lebanon. Daily Statistics. UNHCR registration Unit, December 31, 2013

USGBC (2017). Retrieved July 02, 2017, from https://www.usgbc.org/projects

Verner, D., David R., Maximillian A. and Wilby R. (2013). Increasing Resilience to Climate Change in the Agricultural Sector of the Middle East: The Cases of Jordan and Lebanon. Washington, DC: World Bank. doi:10.1596/978-0-8213-9844-9 License: Creative Commons Attribution CC BY 3.0 potato and impact of fertigation on efficient water use in central Bekaa, Lebanon. In: Fifth Arab Conference on the Peaceful Uses of Atomic Energy, Vol. IV, 13–17/11/2000, Beirut, pp. 93–105.

Waked (2012). Caractérisation des aerosols organiques à Beyrouth, Liban: Unpublished data.

Waked and Afif (2012). Emissions of air pollutants from road transport in 987 Lebanon and other countries in the Middle East region. Atmos. Environ. 988 61, 446–452.

World Bank (2009). Electricity Sector: Public Expenditure Report. Washington DC.

World Bank (2011). Lebanon - Country environmental analysis. Washington DC.

WSU (2016). Washington State University Extension fact sheet. http://cru.cahe.wsu.edu/CEPublications/FS032E/FS032E.pdf. Annexes

Annex I. GHG inventory technical annex

Lebanon's GHG inventory - summary report for national GHG inventory 20	013
--	-----

Greenhouse gas source		CO2	CO ₂ removals	CH₄	N ₂ O	NO _x	СО	NMVOCs	SO _x	HFCs	PFCs*	SF ₆ *	Other	Total gross
and sink cate	gories	emissions / removals CO ₂ (Gg)		CO2 eq. (Gg)	CO2 eq. (Gg)	(Gg)	(Gg)	(Gg)	(Gg)	(Gg)	(Gg)	(Gg)	(Gg)	CO ₂ CO ₂ eq. (Gg)
Total nationa and removals	al emissions 2013	23,246.21	-3,518.80	96.68	1,008.11	88.67	374.77	117.19	119.01	NE	NE	NE	NE	26,284.69
<u>1. Energy</u>		20,551.07		2.12	179.56	88.67	374.61	76.88	117.24					20,775.10
A. Fuel combustion	Reference approach ²	21,072.72												
	Sectoral approach	20,551.07		2.12	179.56	88.67	374.61	76.88	117.24					20,775.10
1. Energy indu	ustries	7,367.39		6.25	18.44	19.83	1.49	0.50	69.42					7,392.08
2. Manufactur industries and construction	ring I	4,403.84		2.23	9.89	10.63	0.53	0.27	28.28					4,415.96
3. Transport		5,987.93		26.74	143.69	54.23	371.06	75.83	5.58					6,158.35
4. Other secto	ors	2,791.91		9.26	7.55	3.98	1.54	0.29	13.96					2,808.72
5. Other (plea	se specify)	0.00		0.00	0.00	0.00	0.00	0.00	0.00					0.00
B. Fugitive from fuels	emissions		-	NO		NO	NO	NO	NO					
1. Solid fuels				NO		NO	NO	NO	NO					
2. Oil and natu	ural gas			NO		NO	NO	NO	NO					

² The IPCC reference approach allows to validate the results of the sectoral approach, which considers energy consumption using a bottom up approach, whereas the IPCC reference approach considers energy suppusing top down approach. This requires a balance of primary fuels produced, plus imports, minus exports, minus international bunkers and minus net changes in stocks.

Greenhouse gas source	CO2	CO ₂ removals	CH₄	N ₂ O	NO _x	СО	NMVOCs	SO _x	HFCs	PFCs*	SF ₆ *	Other	Total gross
and sink categories	emissions / removals CO ₂ (Gg)		CO₂ eq. (Gg)	CO₂ eq. (Gg)	(Gg)	(Gg)	(Gg)	(Gg)	(Gg)	(Gg)	(Gg)	fluorinated (Gg)	CO ₂ CO ₂ eq. (Gg)
2. Industrial processes	2,545.42		0.00	0.00	0.00	0.00	40.31	1.77					2,545.42
A. Mineral products	2.545.42				0.00	0.00	26.12	1.77					2.545.42
B. Chemical industry	, NE		NE	NE	NE	NE	NE	NE					-
C. Metal production	NO		NO	NO	NO	NO	NO	NO					_
D. Other production	0.00				0.00	0.00	14 19	0.00					0.00
E. Production of halocarbons and sulphur hexafluoride						0.00	1111		NO	NO	NO	NO	
F. Consumption of halocarbons and sulphur hexafluoride									NE	NE	NE	NE	
G. Other (please specify)	NO		NO	NO	NO	NO	NO	NO					
3. Solvent and other product use	NE			NE			NE						-
4. Agriculture		-	305.55		682.00	0.00	0.00	0.00					987.55
1.a. Enteric fermentation			265.44										
1.b. Manure management			40.11	170.50			0.00						210.61
2. Rice cultivation			NO				NO						
3. Agricultural soils			0.00	511.50			0.00						511.50
4. Prescribed burning of savannas			NO	NO	NO	NO	NO						-
5. Field burning of agricultural residues			NO	NO	NO	NO	NO						-

Greenhouse gas source	CO ₂	CO ₂ removals	CH ₄	N ₂ O	NO _x	СО	NMVOCs	SO _x	HFCs	PFCs*	SF ₆ *	Other	Total gross
and sink categories	emissions / removals CO ₂ (Gg)		CO ₂ eq. (Gg)	CO2 eq. (Gg)	(Gg)	(Gg)	(Gg)	(Gg)	(Gg)	(Gg)	(Gg)	fluorinated (Gg)	CO ₂ CO ₂ eq. (Gg)
6. Other (please specify)			NO	NO	NO	NO	NO						0.00
5. Land use, land use change and forestry (LULUCF)**	149.67	-3,518.79	0.23	0.04	0.01	0.16							149.95
 Changes in forest and other woody biomass stocks 	0.00	0.00											0.00
2. Forest and grassland conversion	0.00	0.00	0.00	0.00	0.00	0.00							0.00
3. Abandonment of managed lands		0.00											0.00
 CO₂ emissions and removals from soil 	0.00	0.00											0.00
5. Other (please specify)	0.00	0.00	0.00	0.00	0.00	0.00							0.00
<u>6. Waste</u>	0.05		1,680.11	146.50	0.00	0.00	0.00	0.00					1,826.66
A. Solid waste disposal on land			1,279.14										1,279.14
B. Wastewater handling			400.97	146.51	0.00	0.00	0.00						547.47
C. Waste incineration (and open burning)	0.05				0.00	0.00	0.00	0.00					0.0502
D. Other (please specify)			0.00	0.00	0.00	0.00	0.00	0.00					0.00
7. Other (please specify)								-			-		
<u>Memo items</u>													808.05
International bunkers	878		NE	NE	NE	NE	NE	NE					878
A. Aviation	784		NE	NE	NE	NE	NE	NE					784

Greenhouse gas source and sink categories	CO ₂ emissions / removals CO ₂ (Gg)	CO₂ removals	CH₄ CO₂ eq. (Gg)	N₂O CO₂ eq. (Gg)	NO _x (Gg)	CO (Gg)	NMVOCs (Gg)	SO x (Gg)	HFCs (Gg)	PFCs* (Gg)	SF 6 * (Gg)	Other fluorinated (Gg)	Total gross CO ₂ CO ₂ eq. (Gg)
B. Marine	94		NE	NE	NE	NE	NE	NE					94
Multilateral operations	NO												
CO2 emissions from biomass	16												16
<u>CO₂ captured</u>	NO												
Long-term storage of CO ₂ in waste disposal sites	NO												
Notes: * Optional for ** Results ref Table 52. N.B.: Shaded Source: Table	r Level 1 and Lev lect calculations cells are not app 1 and Table 2 in	vel 2 reporting of emissions fro plicable. n the annex to L	om LULUCF ba JNFCCC decisi	sed on 2003 G on 17/CP.8 ar	PG for LU	LUCF. Deta	ails of the ca	lculation	are pres	sented ir)		

Annex II. Activity data and emission factor - indirect gases in industrial processes

Summary of data sources used in the GHG inventory for the industrial processes sector

Reporting category	Activity data needed	Source used in BUR II					
Production and use of miscellaneous mineral	Asphalt for road paving	Lebanese customs through Ministry of Economy and Trade. HS code: 27.15.00.10					
products	Asphalt for roofing – blowing process	This activity data is calculated using the following equation*: quantity of asphalt blown = bitumen import – asphalt for road paying.					
		Lebanese customs through Ministry of Economy and Trade for asphalt for road paving except values for the peri 2010-2013 which were extrapolated due to inconsistencies with numbers of imported bitumen. HS coc 27.15.00.10					
		Ministry of Energy and Water for hitumen import					
Food and drink	Wine production	Union Vinicole du Liban					
	Beer production	The only beer producing company during the period covered by the inventory.					
	Fish production	Nader et.al, 2014 up to the year 2011. Personal communication with Dr. Shadi Indari for the years 2012 and 2013.					
	Meat production	Ministry of Agriculture (for locally produced meat). Extrapolation was performed for the year 2013 due to unavailability of data.					
	Poultry production	Ministry of Agriculture (for locally produced poultry).					
	Bread production	Estimated from wheat import (Lebanese customs through Ministry of Economy and Trade, except from 2013 values which retrieved directly from customs website. HS codes: 10.01.90.00 and 11.02.20.00) and production (Ministry of Agriculture). It is estimated that 50% of wheat is used for bread production, and 50% for cakes and biscuits. The amount of wheat used for bread making was multiplied by a factor of 0.92 based on the fact that each tonne of wheat produces 920 kg of bread.					
	Cakes and biscuits production	Estimated from wheat import (Lebanese customs through Ministry of Economy and Trade, except from 2013 values which retrieved directly from customs website. HS codes: 10.01.90.00 and 11.02.20.00) and production (Ministry of Agriculture). It is estimated that 50% of wheat is used for bread production, and 50% for cakes and biscuits. The amount of wheat used for cakes and biscuits production was multiplied by a factor of 4 based on the fact that each tonne of wheat produces 4 tonnes of cakes/biscuits.					

*The annual weight of asphalt binder (cutback) used in road paving is required to prepare estimates of maximum likely emissions of NMVOCs from this source. This amount is derived from asphalt cement consumption according to the following formulas:

Weight of Cutback Asphalt = Weight of Asphalt Cement + Weight of Diluent Weight of Diluent = Volume of Diluent x Density of Diluent (0.7 kg/l)

Volume of Diluent = Volume of Cutback Asphalt x 0.45 (45% of diluent in Cutback Asphalt)

Volume of Cutback Asphalt = Volume of Asphalt Cement / 0.55 (55% Asphalt Cement in Cutback Asphalt) Volume of Asphalt Cement = Weight of Asphalt Cement / Density of Asphalt Cement (1.1 kg/l)

Activity data for industrial processes in Lebanon for selected years

Year	1994	2000	2006	2011	2013
Quantity of asphalt roofing produced (t) - blowing process	2,550	18,084	20,222	16,205	14,492
Quantity of road paving material used (t)	844,035	111,987.57	35,940.83	89,124.88	81,527.20661
Quantity of beer produced (hl)	8,612	132,888	158,740	211,587	215,110
Quantity of wine produced (hl)	20,417	33,187	43,356	70,000	62,000

Activity data for food production in Lebanon for selected years

Year	1994	2000	2006	2011	2013
Quantity of meat produced (t)	NA	19,348	18,916	51,401	
Quantity of fish produced (t)	NA	8,640	8,090	8,072*	8,822*
Quantity of poultry produced (t)	NA	107,200	129,999	32,099,986	33,419,717
Quantity of bread produced (t)	NA	187,083	177,758	263,733.6	334,303
Quantity of cakes and biscuits produced (t)	NA	813,404	772,862	1,146,668	1,453,491

*Numbers of fish catch provided for North Lebanon coast only, they constitue 40% of total national fish catch according to personal communication with Shadi el Indari. The numbers in the table are the adjusted numbers by calculation.

Calculation of weight of asphalt binder (cutback) used in road paving

A	В	С	D	E	F	G
Weight imported road paving material (kg)	Weight imported road paving material (t)	Volume of imported road paving material	Volume of cutback asphalt	Volume of diluent	Weight of diluent	Weight of cutback asphalt (activity data in tonnes)
	B = A / 1,000	C = B / 1.1	D = C / 0.55	E = D x 0.45	F = E x 0.7	G = B + F
53,613,000	53,613	48,739.09	88,616.53	39,877.44	27,914.21	81,527.21

The annual weight of asphalt binder (cutback) used in road paving is required to prepare estimates of maximum likely emissions of NMVOCs from this source. This amount is derived from asphalt cement consumption according to the following formulas:

Weight of Cutback Asphalt = Weight of Asphalt Cement + Weight of Diluent Weight of Diluent = Volume of Diluent x Density of Diluent (0.7 kg/l)

Volume of Diluent = Volume of Cutback Asphalt x 0.45 (45% of diluent in Cutback Asphalt)

Volume of Cutback Asphalt = Volume of Asphalt Cement / 0.55 (55% Asphalt Cement in Cutback Asphalt) Volume of Asphalt Cement = Weight of Asphalt Cement / Density of Asphalt Cement (1.1 kg/l)

Emission factors and other parameters adopted in the national greenhouse gas inventory

Reporting categories	Emission factor and other parameters	Source of emission factor
Cement production	0.51 t CO ₂ /t clinker produced	Nationally developed emission factor, SNC (MoE/UNDP/GEF, 2011)*
	Correction factor for cement kiln dust (CKD): 1.02*	IPCC Good Practice Guidance and Uncertainty Management, p.3.12
	0.3 kg SO ₂ /t cement produced	Revised 1996 IPCC guidelines, reference manual, p.2.7
Lime production	0.79 t CO ₂ /t quicklime produced	Revised 1996 IPCC guidelines, reference manual, p.2.9
Soda ash use	415 kg CO ₂ /t soda ash used	Revised 1996 IPCC guidelines, reference manual, p.2.13
	320 kg NMVOCs/t road paving material used	Revised 1996 IPCC guidelines, reference manual, p.2.14
Production and use of		
miscellaneous mineral products	2.4 kg NMVOCs/t asphalt roofing produced	Revised 1996 IPCC guidelines, reporting instructions, p.2.9
	0.095 kg CO/t asphalt roofing produced	Revised 1996 IPCC guidelines, reference manual, p.2.13
	0.035 kg NMVOCs/hl beer produced	Revised 1996 IPCC guidelines, reference manual, p.2.41
	0.3 kg NMVOCs/t fish processed	Revised 1996 IPCC guidelines, reference manual, p.2.42
	0.3 kg NMVOCs/t meat processed	Revised 1996 IPCC guidelines, reference manual, p.2.42
	0.3 kg NMVOCs/t poultry processed	Revised 1996 IPCC guidelines, reference manual, p.2.42
	8 kg NMVOCs/t bread processed	Revised 1996 IPCC guidelines, reference manual, p.2.42
	8 kg NMVOCs/t bread processed	Revised 1996 IPCC guidelines, reference manual, p.2.42
	1 kg NMVOCs/t cakes and biscuits processed	Revised 1996 IPCC guidelines, reference manual, p.2.42

Annex III. Activity data for the agriculture sector

Detailed poultry calculation for the year 2013

Year	Laying Hens (used for meat)	Broilers	Traditional chicken	TOTAL	Broilers adjusted to 60 days alive	Total adjusted to days alive
2013	2,500,000	56,000,000	1,000,000	59,500 ,000	9,205,479	12,705,479

Calculation of F_{BN} for 2013

Сгор	Fresh weight (tonnes)	DM	Factor	Frac_{NCRBF}	F _{BN}
Beans, dry	426	1	2	0.03	25.56
Beans, green	24,439	0.85	2	0.03	1,246.39
Broad beans, horse beans, dry	150	1	2	0.03	9.00
Chick peas	2,435	1	2	0.03	146.10
Alfalfa	20,000	0.5	1	0.03	300.00
Lentils	1,471	1	2	0.03	88.26
Lupins	115	1	2	0.03	6.90
Peas, dry	2,495	1	2	0.03	149.70
Peas, green	4,090	0.85	2	0.03	208.59
Vetches	825	0.9	1	0.03	22.28
Total					2,202.77

Annex IV. Land-use classification, definitions and disaggregation

Definition according to IPCC	Definition according to the	Disaggregation adopted according to the national	Disaggregation as per the
GPG for LULUCF	national classification system	classification system (land use map of 1998)	IPCC GPG for LULUCF
			recommendations

	Definition according to IPCC GPG for LULUCF	Definition according to the national classification system	Disaggregation adopted according to the national classification system (land use map of 1998)	Disaggregation as per the IPCC GPG for LULUCF recommendations		
Settlements	This category includes all developed land, including transportation infrastructure and human settlements of any size, unless they are already included under other categories. This should be consistent with the selection of national definitions.	This category includes all developed land, including transportation infrastructure and human settlements	Dense urban area Unorganized dense urban area Moderately dense urban area Moderately dense unorganized urban area Low density urban area Low density unorganized urban area Tourist resort Archeological site Large equipment Industrial or commercial zone Harbor zone Airport Train station Highway Other type of road Farm building Farm building with field crops Farm building with deciduous fruit trees Quarry Dump Sea filling Urban sprawl and /or construction site Vacant urban land Green urban space Large sport or leisure equipment	No disaggregation needed		
	This category includes arable	This category includes arable	Field crops in large area	Annual		
	and tillage land, and agro-	and tillage land. More	Field crops combined with olive	Annual		
	vegetation falls below the	classes were considered under	Field crops combined with vines	Annual		
	threshold used for the forest	this category: crops, olive	Field crops combined with deciduous fruit trees	Annual		
Cropland	land category, consistent	groves, vineyards, deciduous	Field crops combined with citrus trees	Annual		
	with the selection of national definitions	truit trees, bananas, citrus	Field crops combined with greenhouses	Annual		
		cultivations.	Field crops in small plots or terraces	Annual		
			Urban sprawl on field crops	Annual		
			Olives	Perennial		

Definition according to IPCC GPG for LULUCF	Definition according to the national classification system	Disaggregation adopted according to the national classification system (land use map of 1998)	Disaggregation as per the IPCC GPG for LULUCF
			recommendations
		Olives combined with field crops	Perennial
		Olives combined with vines	Perennial
		Olives combined with deciduous fruit trees	Perennial
		Olives combined with citrus trees	Perennial
		Olives combined with intensive field crops	Perennial
		Olives combined with greenhouses	Perennial
		Vineyards	Perennial
		Vineyards combined with field crops	Perennial
		Vineyards combined with olives	Perennial
		Vineyards combined with deciduous fruit trees	Perennial
		Vineyards combined with intensive field crops	Perennial
		Vineyards combined with greenhouses	Perennial
		Deciduous fruit trees	Perennial
		Deciduous fruit trees combined with field crops	Perennial
		Deciduous fruit trees combined with olives	Perennial
		Deciduous fruit trees combined with vines	Perennial
		Deciduous fruit trees combined with citrus trees	Perennial
		Deciduous fruit trees combined with banana trees	Perennial
		Deciduous fruit trees combined with intensive field crops	Perennial
		Deciduous fruit trees combined with greenhouses	Perennial
		Citrus trees	Perennial
		Citrus trees combined with field crops	Perennial
		Citrus trees combined with olives	Perennial
		Citrus trees combined with deciduous fruit trees	Perennial
		Citrus trees combined with banana trees	Perennial
		Citrus trees combined with intensive field crops	Perennial
		Citrus trees combined with greenhouses	Perennial
		Banana trees	Perennial
		Banana trees combined with deciduous fruit trees	Perennial
		Banana trees combined with citrus trees	Perennial

	Definition according to IPCC GPG for LULUCF	Definition according to the national classification system	Disaggregation adopted according to the national classification system (land use map of 1998)	Disaggregation as per the IPCC GPG for LULUCF recommendations
			Banana trees combined with intensive field crops	Perennial
			Banana trees combined with greenhouses	Perennial
			Urban sprawl on orchard	Perennial
			Intensive filed crops	Annual
			Intensive filed crops combined with olives	Annual
			Intensive filed crops combined with deciduous fruit trees	Annual
			Intensive filed crops combined with citrus trees	Annual
			Intensive filed crops combined with greenhouses	Annual
			Greenhouses	Annual
			Greenhouses combined with field crops	Annual
			Greenhouses combined with vines	Annual
			Greenhouses combined with deciduous fruit trees	Annual
			Greenhouses combined with citrus trees	Annual
			Greenhouses combined with banana trees	Annual
			Greenhouses combined with intensive field crops	Annual
			Urban sprawl on greenhouses	Annual
	Forest: This category	This category included the	Dense pine forests (mainly Pinus brutia and Pinus pinea)	Coniferous
	vegetation consistent with	following:	Dense cedre forests (Cedrus libani)	Coniferous
	thresholds used to define		Dense fir forests (Abies Cilicia)	Coniferous
	forest land in the		Dense cypress forests (Cupressus ssp.)	Coniferous
	national GHG inventory, sub-		Dense oak forests (Quercus ssp.)	Broadleaf
	into managed and		Dense broadleaves forests (Platanus, Populus, Salix)	Broadleaf
Forest land	unmanaged and also by		Mixed dense forests	Mixed
Torestiand	ecosystem type as specified		Urban sprawl on dense forest	Mixed
	in the IPCC Guidelines.6 It		Low density pine forests (Pinus brutia and Pinus pinea)	Coniferous
	vegetation that currently		Low density cedre forests (Cedrus libani)	Coniferous
	falls below, but is expected		Low density Juniper forests (Juniperus ssp.)	Coniferous
	to exceed, the threshold of		Low density fir forests (Abies, Cilicia)	Coniferous
	the forest land category.		Low density cypress forests (Cupressus ssp.)	Coniferous
	manageu mest. All mests		Low density oak forests (Quercus ssp.)	Broadleaf

	Definition according to IPCC GPG for LULUCF	Definition according to the national classification system	Disaggregation adopted according to the national classification system (land use map of 1998)	Disaggregation as per the IPCC GPG for LULUCF recommendations
	subject to some kind of		Low density broadleaves forests (Platanus, Populus, Salix)	Broadleaf
	human interactions (notably		Low density mixed forests	Mixed
	harvest of industrial round-		Urban sprawl on low density forest	Mixed
	wood (logs) and fuelwood,		Shrubland	Broadleaf
	production and use of wood		Shrubland with dispersed trees	Broadleaf
	commodities, and forest managed for amenity value or environmental protection if specified by the country), with defined geographical boundaries.		Urban sprawl on shrubland	Broadleaf
	This category includes	This category includes	Moderately dense herbaceous vegetation	Annual grasses
Grassland	rangelands and pasture land that is not considered as cropland. It also includes systems with vegetation that fall below the threshold used in the forest land category and is not expected to exceed, without human intervention, the thresholds used in the forest land category. This ategory also includes all grassland from wild lands to recreational areas as well as agricultural and silvo-pastural systems, subdivided into managed and unmanaged, consistent with national definitions.	rangelands and pasture land that is not considered as cropland. More specifically, it included moderately dense herbaceous vegetation, and highly dense herbaceous vegetation.	Low density herbaceous vegetation	Annual grasses
Wetland	This category includes land that is covered or saturated by water for all or part of the year (e.g., peatland) and that does not fall into the forest land, cropland, grassland or	This category includes land that is covered or saturated by water for all or part of the year. More specifically, it included the following classes: surface water bodies, lakes,	Continental humid zone Marine humid zone Water plane (reservoir) Hill lake Stream or river	Flooded areas (Artificial reservoirs and hill lakes)

	Definition according to IPCC GPG for LULUCF	Definition according to the national classification system	Disaggregation adopted according to the national classification system (land use map of 1998)	Disaggregation as per the IPCC GPG for LULUCF recommendations
	settlements categories. This category can be subdivided into managed and unmanaged according to national definitions. It includes reservoirs as a managed sub-division and natural rivers and lakes as unmanaged sub-divisions.	rivers, and reservoirs.	Harbor basin	
	This category includes bare	This category included bare	Bare rock	-
	soil, rock, ice, and all unmanaged land areas that	burned forested lands	Urban sprawl on bare rock	-
	do not fall into any of the		Bare soil	
Other land	other five		Beach	No need for disaggregation
	categories. It allows the total of identified land areas to match the national area,		Sand dune	
	where data are available.		Burned area	

List of activity data

	only for calc. purposes		Extrap	olation		Baseline			Interpolatio n								Interpolatio n				
	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
FF-Total	258646.65	258475.9 5	258304.3 4	258131.7 3	257957.9 8	257890.0 0	257628.1 3	257172.0 0	257142.81	257113.6 3	257059.1 9	256905.9 4	256543.9 4	256236.6 3	256088.2 5	255775.0 0	255575.03	255375.0 6	254771.1 3	254463.1 3	254106.1 9
Coniferous	35274.24	35257.05	35239.76	35222.37	35204.87	35216.00	35187.56	35121.00	35116.50	35112.00	35102.81	35083.69	35063.13	35028.06	35022.31	34977.44	34960.44	34943.44	34887.56	34871.06	34822.44
Broadleaf	196658.18	196517.5 8	196376.2 3	196234.0 6	196090.9 5	196008.0 0	195792.4 4	195451.7 5	195431.06	195410.3 8	195366.6 9	195244.7 5	194924.1 9	194682.3 1	194544.0 6	194300.3 8	194131.47	193962.5 6	193467.0 6	193184.1 3	192925.3 8
Mixed	26714.23	26701.32	26688.35	26675.30	26662.16	26666.00	26648.13	26599.25	26595.25	26591.25	26589.69	26577.50	26556.63	26526.25	26521.88	26497.19	26483.13	26469.06	26416.50	26407.94	26358.38
GG-Total	318130.90	318023.2 9	317915.1 1	317806.2 8	317696.7 5	317600.0 0	317497.1 3	317237.1 3	317212.41	317187.6 9	317158.0 0	317018.8 8	316755.5 6	316573.9 4	316558.2 5	316314.6 9	316180.03	316045.3 7	315697.1 2	315518.0 6	315180.6 2
CC-Total	333242.83	333069.8 0	332895.8 7	332720.9 0	332544.7 9	332364.0 0	332082.1 3	331856.6 9	331819.22	331781.7 5	331669.5 6	331279.9 4	331167.2 5	330804.0 6	330776.7 5	330505.0 6	330081.53	329658.0 0	329415.1 2	328959.3 1	328364.6 9
Perennial	160701.36	160646.4 9	160591.3 3	160535.8 4	160479.9 8	160354.0 0	160287.7 5	160243.2 5	160230.06	160216.8 8	160185.5 6	160126.5 6	160100.6 3	160047.5 0	160041.0 0	159937.6 9	159719.69	159501.6 9	159376.0 6	159235.2 5	158970.0 0
Annual	172541.46	172423.3 2	172304.5 4	172185.0 7	172064.8 1	172010.0 0	171794.3 8	171613.4 4	171589.16	171564.8 8	171484.0 0	171153.3 8	171066.6 3	170756.5 6	170735.7 5	170567.3 8	170361.84	170156.3 1	170039.0 6	169724.0 6	169394.6 9
FF-Burned		NE	NE	NE	NE	0.00	1048.63	330.00	73.19	73.19	304.00	62.50	423.69	1197.00	708.00	25.81	427.72	427.72	161.13	603.00	127.56
Coniferous		NE	NE	NE	NE	0.00	122.88	54.25	6.47	6.47	31.25	5.31	37.44	126.56	83.44	6.56	59.97	59.97	14.63	37.69	4.75
Broadleaf		NE	NE	NE	NE	0.00	870.00	217.06	53.66	53.66	251.88	53.31	347.56	1012.63	568.38	16.56	311.59	311.59	133.56	548.31	44.25
Mixed		NE	NE	NE	NE	0.00	55.75	58.69	13.06	13.06	20.88	3.88	38.69	57.81	56.19	2.69	56.16	56.16	12.94	17.00	78.5625
FF-Burned		NE	NE	NE	NE	0.00	1048.63	330.00	73.19	73.19	304.00	62.50	423.69	1197.00	708.00	25.81	427.72	427.72	161.13	603.00	127.56
Fuel Type 3		NE	NE	NE	NE	0.00	280.50	98.63	5.94	5.94	204.81	34.44	163.69	631.69	157.81	13.69	184.59	184.59	58.06	262.31	78.5625
Fuel Type 4		NE	NE	NE	NE	0.00	482.69	97.63	31.38	31.38	59.69	17.06	134.56	379.81	213.00	8.00	155.59	155.59	53.06	185.13	44.25
Fuel Type 5		NE	NE	NE	NE	0.00	6.94	14.75	5.34	5.34	12.75	4.19	1.81	32.56	24.56	0.00	7.00	7.00	2.88	10.25	0
6&7		NE	NE	NE	NE	0.00	278.50	119.00	30.53	30.53	26.75	6.81	123.63	152.94	312.63	4.13	80.53	80.53	47.13	145.31	4.75
GG-Burned		NE	NE	NE	NE	0.00	198.38	125.50	148.47	148.47	492.19	96.44	95.94	815.06	42.75	12.56	271.00	271.00	182.38	242.75	37.88
Fuel Type 1		NE	NE	NE	NE	0.00	148.13	78.50	76.44	76.44	287.44	50.06	74.69	638.69	28.19	6.13	206.72	206.72	109.06	184.88	37.875
Fuel Type 2		NE	NE	NE	NE	0.00	50.25	47.00	72.03	72.03	204.75	46.38	21.25	176.38	14.56	6.44	64.28	64.28	73.31	57.88	0
CC-Burned		NE	NE	NE	NE	0.00	493.56	501.75	250.94	250.94	528.50	222.69	344.06	334.44	274.81	542.00	675.09	675.09	585.19	1305.81	9.5625
LS-Total		451.34	453.73	456.40	459.40	0.00	646.62	941.56	91.38	91.38	196.31	682.00	738.00	852.13	191.38	828.50	758.16	758.16	1195.06	942.88	1248.25
FS		170.70	171.60	172.61	173.75		261.87	456.13	29.19	29.19	54.44	153.25	362.00	307.31	148.38	313.25	199.97	199.97	603.94	308.00	356.94
Coniferous		17.19	17.28	17.39	17.50	0.00	28.44	66.56	4.50	4.50	9.19	19.13	20.56	35.06	5.75	44.88	17.00	17.00	55.88	16.50	48.625

ید یہ 10				NE NE	0.00 0.00		NE NE		NE NE	NE NE	NE NE			NE NE	NE NE			NE NE	NE NE	
ow	NE	NE	NE	NE	0.00	NE	NE	NE	NE	NE	NE	NE	NE	NE	37	NE	NE	NE	NE	3.75
LW-Total	NE	NE	NE	NE	0.00	NE	NE	NE	NE	NE	NE	NE	NE	NE	37	NE	NE	NE	NE	3597.56
	NO	NO	NO	NO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	233.48	
MOE, 2010 &	NE	NE	NE	NE	0.00	305.00	305.00	305.00	305.00	278.00	278.00	278.00	278.00	278.00	0.00	0.00	95.73	0.00	95.73	
LF-Total	NE	NE	NE	NE	0.00	305.00	305.00	305.00	305.00	278.00	278.00	278.00	278.00	278.00	52.00	52.00	147.73	52.00	381.21	302.62
Annual	 118.15	118.77	119.47	120.26	0.00	215.63	180.94	24.28	24.28	80.88	330.63	86.75	310.06	20.81	168.38	205.53	205.53	117.25	315.00	329.375
Perennial	54.87	55.16	55.49	55.85	0.00	66.25	44.50	13.19	13.19	31.31	59.00	25.94	53.13	6.50	103.31	218.00	218.00	125.63	140.81	265.25
cs	173.02	173.94	174.96	176.11	0.00	281.88	225.44	37.47	37.47	112.19	389.63	112.69	363.19	27.31	271.69	423.53	423.53	242.88	455.81	594.63
GS	107.61	108.18	108.82	109.54	0.00	102.88	260.00	24.72	24.72	29.69	139.13	263.31	181.63	15.69	243.56	134.66	134.66	348.25	179.06	296.6875
Broadleaf	140.60	141.34	142.18	143.11	0.00	17.88	340.69	20.69	20.69	43.69	121.94	320.56	241.88	138.25	243.69	168.91	168.91	495.50	282.94	49 5625

NE: Not Estimated (No activity data available) - NO: Not Occuring

• FF = forest land remaining forest land

• GG = grassland remaining grassland

• CC = cropland remaining cropland

- WW = wetlands remaining wetlands
- SS = settlements remaining settlements
- OO = other land remaining other land
- LF = lands converted to forest land
- LG = lands converted to grassland
- LC = lands converted to cropland
- LW = lands converted to wetlands
- LS = lands converted to settlements
- LO = lands converted to other land

List of	E/R	factors
---------	-----	---------

Emission Factor	Symbol	Page in GPG	Land use Category /Sheet name	Value(s) used	Source of Value	Notes
Average annual net increment in volume suitable for industrial processing	Ι _V	3.26	FF/ FL-1a_1of4	0	IR	not needed anymore since a default for G _w is used
Basic wood density	D	3.26	FF/ FL-1a_1of4	0	IR	not needed anymore since a default for G _w is used
Biomass Expansion factor for conversion of annual net increment (including bark) to above ground tree biomass increment	BEF1	3.26	FF/ FL-1a_1of4	0	IR	not needed anymore since a default for G _w is used
Average annual aboveground	C	3.26	FF/ FL-1a_1of4	3 (Coniferous), 4 (Broadleaved), 3.5 (Mixed)	IPCC GPG Default Table 3A.1.5	
biomass increment	Gw	3.26	LF/ FL-2a_1of1	5.725 (Coniferous)	IPCC GPG Default Table 3A.1.6, experts' surveys (E. Chneis)	
Root-shoot ratio appropriate to increments	R	3.26 3.26	FF/ FL-1a_1of4 LF/ FL-2a_1of1	0.27	FAO 2005	
Carbon fraction of dry matter	CF	3.25 3.33 3.25 3.57 3.107 3.140	FF/ FL-1a_2of4 FF/ FL-1b_1of3 LF/ FL-2a_1of1 LF/ FL-2b_2of2 GG/GL-1a_2of2 WL-2a2_1of1	0.5	IPCC GPG Default	
Annually extracted volume of roundwood	н	3.27	FF/ FL-1a_2of4	0	experts' surveys (E. Chneis, J. Stephan)	
Biomass density	D	3.27	FF/ FL-1a_2of4	0.5001 (Coniferous), 0.58	FAO 2005, IPCC GPG Table 3A.1.9, (Altaş et al., 2007),	

Emission Factor	Symbol	Page in GPG	Land use Category /Sheet name	Value(s) used	Source of Value	Notes
			FF/ FL-1a_3of4			
Biomass expansion factor for converting volumes of extracted	BEF ₂	3.27	FF/ FL-1a_2of4	1.3 (Coniferous), 1.4 (Broadleaved),	IPCC GPG Default Table	
roundwood to total aboveground biomass (including bark)			FF/ FL-1a_3of4	1.35 (Mixed)	3A.1.10	
Fraction of biomass left to decay in forest due to commercial roundwood gathering	F _{BL}	3.27	FF/ FL-1a_2of4	0.15	IPCC GPG Default Table 3A.1.11	
Annual volume of fuelwood gathering	FG	3.27	FF/ FL-1a_3of4	Non- coniferou (m ³) 1994 14628 1995 14652 1996 14676 1997 14700 1998 14725 1999 14000 2000 15000 2001 15000 2002 15000 2003 15000 2004 15000 2005 15000 2006 15000 2008 15000 2009 15000 2010 15000 2011 15000	Conifero us C (m ³) 3853 3952 4045 4114 4089 4081 4063 4063 4063 4063 4063 4063 4074 4051 4074 4051 4040 4028 4017 3896 3900 3900 3900 3866 3833	NC volumes for the years 1994- 1998 and 2012 are generated by extrapolation of the trend from the years 1999-2011 C volume for the year is generated by extrapolation of the trend from the years 1994-2011

Emission Factor	Symbol	Page in GPG	Land use Category /Sheet name	Value(s) used	Source of Value	Notes
				2012 14725	4064	
				2013 15000	3769	
Average biomass stock of forest				134 (Coniferous),		
areas	B _W	3.28	FF/ FL-1a_3of4	122 (Broadleaved),	IPCC GPG Default Table 3A.1.2	
				128 (IVIIXed)		
in forest due to disturbance	F _{bl}	3.28	FF/ FL-1a_4of4	0.415	IPCC GPG Default Table	
					57.1.12	
Annual transfer into dead wood	B _{into}	3.33	FF/FL-1b_1of3	0	NA	Tier 1 assumes no change
Annual transfer out of dead wood	B _{out}	3.33	FF/FL-1b_1of3	0	NA	Tier 1 assumes no change

Emission Factor	Symbol	Page in GPG	Land use Category /Sheet name	Value(s) used	Source of Value	Notes
Reference stock of litter under native, unmanaged forest corresponding to state i	LT _{ref (i)}	3.35	FF/FL-1b_1of3	0	NA	Tier 1 assumes no change
Adjustment factor reflecting the effect of management intensity or practices on LTref(i) in state i	f _{mgt} intensity(i)	3.35	FF/FL-1b_2of3	0	NA	Tier 1 assumes no change
Adjustment factor reflecting a change in the disturbance regime on LTref (i) in state i	f _{dist} regime(i)	3.35	FF/FL-1b_2of3	0	NA	Tier 1 assumes no change
Reference stock of litter under previous state j	LT _{ref (j)}	3.35	FF/FL-1b_2of3	0	NA	Tier 1 assumes no change
Adjustment factor reflecting the effect of management intensity or practices on LTref (j)	f _{mgt} intensity(j)	3.35	FF/FL-1b_2of3	0	NA	Tier 1 assumes no change
Adjustment factor reflecting a change in the disturbance regime on LTref (j)	f _{dist} regime(j)	3.35	FF/FL-1b_2of3	0	NA	Tier 1 assumes no change
Time period of the transition	T _{ij}	3.35	FF/ FL-1b_3of3	20	IPCC GPG Default	
from state i to j		3.40	FF/ FL-1c1_1of2			
Reference carbon stock	SOC _{REF}	3.40	FF/FL-1c1_1of2	38 (forest soils)	IPCC GPG Default Table 3.2.4	
		3.63				
		3.75	$CC/CL-1C1_10T2$	28 (grassland soils)	IPCC GPG Default Table 3.3.3	
		3.112	00/01-1012	So (grassiariu solis)		

Emission Factor	Symbol	Page in GPG	Land use Category /Sheet name	Value(s) used	Source of Value	Notes
Adjustment factor reflecting the effect of a change from the native forest to the forest type in state i	f _{forest type} i	3.40	FF/FL-1c1_1of2	0	NA	Tier 1 assumes no change
Adjustment factor reflecting the effect of management intensity or practices on forest in state i	${f f}_{man}$ intensity i	3.40	FF/FL-1c1_1of2	0	NA	Tier 1 assumes no change
Adjustment factor reflecting the effect of a change in the disturbance regime to state i with respect to the native forest	f _{dist regime} i	3.40	FF/FL-1c1_1of2	0	NA	Tier 1 assumes no change
Adjustment factor reflecting the effect of a change from the native forest to the forest type in state j	f _{forest type} j	3.40	FF/FL-1c1_2of2	0	NA	Tier 1 assumes no change
Adjustment factor reflecting the effect of management intensity or practices on forest in state j	f _{man} intensity j	3.40	FF/FL-1c1_2of2	0	NA	Tier 1 assumes no change
Adjustment factor reflecting the effect of a change in the disturbance regime to state j with respect to the native forest	f _{dist regime} j	3.40	FF/FL-1c1_2of2	0	NA	Tier 1 assumes no change

Emission Factor	Symbol	Page in GPG	Land use Category /Sheet name	Value(s) used	Source of Value	Notes
Emission factor for CO2 from drained organic forest soils	EF _{Drainage}	3.42	FF/FL-1c2_1of1	0	IR	No organic soils (Expert's surveys, T. Darwish)
		3.63	LF/FL-2c1_1of1			
Mass of available fuel	В	3.49	FF/FL-1d_1of1	12,500 (fuel type 3), 30,000 (fuel type 4), 9,500 (fuel type 5), 12,500 (fuel type 6, 7)	(TRAGSA, 2012)	
Combustion efficiency or fraction of biomass combusted	с	3.49	FF/FL-1d_1of1	0.5	IPCC GPG Default Table	
		3.120	GG/GL-1d_1of1			
CH4 Emission factor	D	3.49	FF/FL-1d_1of1	9	IPCC GPG Default Table 3A.1.16	
CO Emission factor	F	3.49	FF/FL-1d_1of1	130	IPCC GPG Default Table 3A.1.16	
N2O Emission factor	н	3.49	FF/FL-1d_1of1	0.11	IPCC GPG Default Table 3A.1.16	
NOx Emission factor	J	3.49	FF/FL-1d_1of1	0.7	IPCC GPG Default Table 3A.1.16	
Standing biomass stock in terms of carbon in naturally regenerated forest	B _{standing} NatR	3.57	LF/FL-2b_1of2	0	IR	No data on natural regeneration
Mortality rate in naturally regenerated forest	M _{NatR}	3.57	LF/FL-2b_1of2	0	IR	No data on natural regeneration

Emission Factor	Symbol	Page in GPG	Land use Category /Sheet name	Value(s) used	Source of Value	Notes
Annual transfer out of dead wood for naturally regenerated forest area	B _{out NatR}	3.57	LF/FL-2b_1of2	0	IR	No data on natural regeneration
Standing biomass stock in terms of carbon in artificially regenerated forest	B _{standing} ArtR	3.57	LF/FL-2b_1of2	0	NA	Tier 1 assumes no change
Mortality rate in artificially regenerated forest	M _{ArtR}	3.57	LF/FL-2b_1of2	0	NA	Tier 1 assumes no change
Annual transfer out of dead wood for artificially regenerated forest area	B _{out ArtR}	3.57	LF/FL-2b_2of2	0	NA	Tier 1 assumes no change
Annual change in litter carbon for naturally regenerated forest	DC_{NatR}	3.57	LF/FL-2b_2of2	0	IR	No data on natural regeneration
Annual change in litter carbon for artificially regenerated forest	DC _{ArtR}	3.57	LF/FL-2b_2of2	1	IPCC GPG Default Table 3.2.1, experts' surveys (E. Chneis)	
Stable soil organic carbon on previous land use, either cropland or grassland, SOCNon-forest Land	SOC _{Non-} forest_land	3.63	LF/FL-2c1_1of1	0	IPCC GPG Default	
Duration of the transition from SOC _{Non-forest Land} to SOC _{ref}	T _{aff}	3.63	LF/FL-2c1_1of1	20	IPCC GPG Default	
Annual growth rate of perennial woody biomass	G	3.71	CC/CL-1a_1of1	2.1 (unburned perennial woody crops)	IPCC GPG Default Table 3.3.2	

Emission Factor	Symbol	Page in GPG	Land use Category /Sheet name	Value(s) used	Source of Value	Notes
Annual carbon stock in biomass removed	L	3.71	CC/CL-1a_1of1	63 (burned perennial woody crops)	IPCC GPG Default Table 3.3.2	
Inventory time period	т	3.75	CC/CL-1c1_1of2	20	IPCC GPG Default	
		3.112	GG/GL-1c1_1of2			
Stock change factor for land use or land-use change type in the beginning of inventory year	FLU _(0-T)	3.75	CC/CL-1c1_1of2	0.82	IPCC GPG Default Table 3.3.4, experts' surveys (J. Stephan)	
Stock change factor for management regime in the beginning of inventory year	FMG _(0-T)	3.75	CC/CL-1c1_1of2	1	IPCC GPG Default Table 3.3.4, experts' surveys (J. Stephan)	
Stock change factor for input of organic matter in the beginning of inventory year	FI _(0-т)	3.75	CC/CL-1c1_1of2	1	IPCC GPG Default Table 3.3.4, experts' surveys (J. Stephan)	
Stock change factor for land use or land-use change type in current inventory year	FLU ₍₀₎	3.75	CC/CL-1c1_2of2	0.82	IPCC GPG Default Table 3.3.4, experts' surveys (J. Stephan)	
Stock change factor for management regime in current inventory year	FMG ₍₀₎	3.75	CC/CL-1c1_2of2	1	IPCC GPG Default Table 3.3.4, experts' surveys (J. Stephan)	
Stock change factor for input of organic matter in current inventory year	FI ₍₀₎	3.75	CC/CL-1c1_2of2	1	IPCC GPG Default Table 3.3.4, experts' surveys (J. Stephan)	
Emission factor for climate type c	EF	3.79	CC/CL-1c2_1of1	0	IR	No organic soils (Expert's surveys, T. Darwish)
Emission Factor	Symbol	Page in GPG	Land use Category /Sheet name	Value(s) used	Source of Value	Notes
---	------------------------	-------------	----------------------------------	---------------	-------------------------------	---
		3.114	GG/GL-1c2_1of1			
Type of lime	type	3.80	CC/CL-1c3_1of1	0	IR	No lime applied (experts' surveys,
		3.115	GG/GL-1c3_1of1			
Total Annual amount of lime		3.80	CC/CL-1c3_1of1			
applied	amount	3.115	GG/GL-1c3_1of1	U	Experts' surveys (J. Stephan)	No lime applied
Emission Factor (carbonate		3.80	CC/CL-1c3_1of1		in.	No line analiad
carbon contents of the materials)	LF	3.115	GG/GL-1c3_1of1	U		No lime applied
Average annual biomass growth of perennial woody biomass	G _{perennial}	3.107	GG/GL-1a_1of2	0	IR	No grasslands covered with perennial woody biomass
Average annual biomass loss of perennial woody biomass	$L_{perennial}$	3.107	GG/GL-1a_1of2	0	IR	No grasslands covered with perennial woody biomass
Average annual biomass growth of grasses	G _{grasses}	3.107	GG/GL-1a_2of2	0	NA	Tier 1 assumes no change
Average annual biomass loss of grasses	L _{grasses}	3.107	GG/GL-1a_2of2	0	NA	Tier 1 assumes no change
Stock change factor for land use or land-use change type in the beginning of inventory year	FLU _(0-T)	3.112	GG/GL-1c1_1of2	1	IPCC GPG Default Table 3.4.5	

Emission Factor	Symbol	Page in GPG	Land use Category /Sheet name	Value(s) used	Source of Value	Notes
Stock change factor for management regime in the beginning of inventory year	FMG _(0-T)	3.112	GG/GL-1c1_1of2	0.95	IPCC GPG Default Table 3.4.5, Darwish & Faour (2008)	
Stock change factor for input of organic matter in the beginning of inventory year	FI _(0-т)	3.112	GG/GL-1c1_1of2	1	IPCC GPG Default Table 3.4.5, experts' surveys (J. Stephan)	
Stock change factor for land use or land-use change type in current inventory year	FLU ₍₀₎	3.112	GG/GL-1c1_2of2	1	IPCC GPG Default Table 3.4.5	
Stock change factor for management regime in current inventory year	FMG ₍₀₎	3.112	GG/GL-1c1_2of2	0.95	IPCC GPG Default Table 3.4.5, Darwish & Faour (2008)	
Stock change factor for input of organic matter in current inventory year	FI ₍₀₎	3.112	GG/GL-1c1_2of2	1	IPCC GPG Default Table 3.4.5, experts' surveys (J. Stephan)	
Mass of available fuel	В	3.120	GG/GL-1d_1of1	5,000 (fuel type 1), 6,500 (fuel type 2)	(TRAGSA, 2012)	
CH4 Emission factor	D	3.120	GG/GL-1d_1of1	3	IPCC GPG Default Table 3A.1.16	
CO Emission factor	F	3.120	GG/GL-1d_1of1	97	IPCC GPG Default Table 3A.1.16	
N2O Emission factor	н	3.120	GG/GL-1d_1of1	0.11	IPCC GPG Default Table 3A.1.16	
NOx Emission factor	J	3.120	GG/GL-1d_1of1	7	IPCC GPG Default Table 3A.1.16	
Living biomass immediately following conversion to flooded land	B _{After}	3.140	WL-2a2_1of1	0	IPCC GPG Default	

Emission Factor	Symbol	Page in GPG	Land use Category /Sheet name	Value(s) used	Source of Value	Notes
Living biomass in land immediately before conversion to flooded land	B _{Before}	3.140	WL-2a2_1of1	6.08	IPCC GPG Default Tables 3.4.2, 3.4.3	
Carbon stock in living biomass immediately following conversion to settlements	C _{After}	3.143	LS/ SL-2a_1of1	0	IPCC GPG Default	
Carbon stock in living biomass in forest immediately before conversion to settlements	C _{Before}	3.143	LS/ SL-2a_1of1	5 (Annual crops), 63 (Perennial woody crops), 0.8 (Grasslands), 67 (Coniferous forests), 61 (Broadleaved forests), 64 (Mixed forests)	IPCC GPG Default Tables 3.4.8, 3.3.2, 3.4.2, 3A.1.2	

IR: Irrelevant

NA: Not Available

Annex V. Recalculations

Sector	Recalculated categories	Parameter changed	Reasons for recalculation	Years of recalculations	Impact of recalculation
Energy	Residential	Change in Biomass	New data on charcoal production added to biomass use in energy	1994-2012	
			Inclusion of emission factors of non-CO $_2$ gases		
Industrial processes	Production of Lime	Quantity of lime produced	Revision of data provided by the lime plant	2004 - 2012	An average 11% yearly decrease in CO ₂ emissions over the period 2004 - 2012
Agriculture Domestic livestock: enteric fermentation and manure management	Dairy cows	Revision of numbers by MoA	2008 - 2011 - 2012	An average of 3.3% yearly decrease of CH_4 emissions	
	Other cattle	The source in previous inventory was FAO and Syndicate of beef importers. This inventory adopted a long-term approach of collecting data from the MoA, which does not include beef import in their statistics.	1998 - 2012	over the period 2005 – 2012. An average of 1.9% yearly decrease of N_2O emissions	
		Sheep	Revision of numbers by MoA	2008 - 2011 - 2012	2012.
		Goats	Revision of numbers by MoA	2008 - 2011 - 2012	
		Camels	Revision of numbers by FAOSTAT	2011 - 2012	-
		Poultry	Revision of numbers by MoA	1998 – 2012 except 2004 and 2007	-
	Agricultural soils	Dry beans, broad beans and horse beans, chick peas, lentils, dry peas, green peas, oats, carrot and turnips, garlic, onions	Revision of numbers by FAOSTAT	2010 - 2012	An average of 4.5% yearly decrease of N ₂ O emissions over the period 2005 - 2012.
		Green beans	Revision of numbers by FAOSTAT	2012	-
		lupins, barley, maize, potatoes	Revision of numbers by FAOSTAT	2010	-

		Average of fraction of residue removed from field for N fixing and non-N fixing crops FracR	Produce automated calculation of Nitrogen input from crop residues (F_{CR}) using UNFCCC excel model as opposed to manual calculations	1994 - 2012	
Waste	Solid waste disposal	Change in population number	Inclusion of Syrian displaced in population estimation	2012	Increase in CH_4 emissions by 5.5% for 2012
		Change fraction of DOC which actually degrades from 0.77 to 0.5	Based on the results of the GHG inventory review of 2011, the value of 0.77 was considered inconsistent with the IPCC GPG leading to an overestimation of emissions. The value of 0.5 (including lignin C) was recommended.	1994-2012	Reduction of CH4 emissions by 35% for all years
	Domestic and industrial	Change in population number	Inclusion of Syrian displaced in population estimation	2012	Increase in CH ₄ emissions by 9.5% for 2012
	wastewater	Reconsideration of the fractions of disposal of industrial wastewater	Based on the results of the GHG inventory review of 2011, discharge of industrial wastewater in septic tanks was considered inappropriate.	1994-2012	Reduction of CH₄ emissions by 2% for all years
	Waste incineration	Amount of clinical waste incinerated	Availability of new activity data from field-survey in hospitals	2004-2012	Reduction of CO ₂ emissions by 83% for the years 2004- 2012

Annex VI. Mitigation actions of energy sector

1. Data collection

Data has been collected per sub-category and split by year, using official publications and references from governmental authorities, in addition to personal interviews and online questionnaires submitted to implementing agencies and local suppliers. The references used and stakeholders consulted provide a comprehensive overview of the energy mitigation initiatives undertaken during the period 2012-2013. The collected information has then been merged to report progress by year, and by initiative-leader (private sector, donor or government).

Cumulative energy savings and GHG emission reductions are then presented for two milestone years, 2013 and 2030: The first for energy and GHG savings and the second for energy and GHG avoided.

Category	Data Collection	Calculation Reference
	MoEW/UNDP/GEF, 2016	MoE, 2017c
1 Decentralized PV Installations	CEDRO, 2017	Jordan and Kurtz, 2012
	LCEC, 2016	Expert judgement
		MaE 2017a
2 Solar Water Rumping	UNDD 2015	MOE, 2017C
2 Solar Water Pumping		Synart judgement
	LCEC, 2010	Expert Judgement
	MoEW, 2015	MoE, 2017c
3 Solar Street Lighting	MoEW/LCEC, 2011	Jordan and Kurtz, 2012
	CEDRO, 2017	Expert judgement
	CEDRO, 2015	
	MoEW, 2015	MoE, 2017c
4 Efficient Street Lighting	MoEW/LCEC, 2011	LCEC, 2017a
	CEDRO, 2017	
	CEDRO, 2015	
	UNEP, 2016	MoE, 2017c
5 Solar Water Heating	CEDRO, 2017	
		MoE 2017c
6 Cortified Green Buildings		
o certined Green Bundlings	BRELAW, 2017	Export judgmont
		Expert Judgment
	CEDRO, 2017	MoE, 2017c
7 Energy Conservation Measures	LCEC, 2017b	Expert judgment
	Shehadeh, 2017	
	Bsaibes, 2017	
	Diab, 2017	
	CEDRO, 2017	MoE, 2017c
8 Biomass Space Heating	Sfeir, 2017	Expert judgment
	CEDRO, 2017	MoE, 2017c
	, -	Expert judgment
9 Other Renewables		Jordan and Kurtz, 2012
10 Other Energy Efficiency Measures	MoE, 2017a	MoE, 2017a
11 Device algests		
11 Power plants	IVIUE VV, 2015	WI0EW, 2015

Data collection for Mitigation actions in the energy sector

2. Assumptions and calculation methodology

Emission factor

Quantification of greenhouse gas emission reductions is done using national grid emission factors as calculated by the Ministry of Environment. The emission factors are provided for the years 2011 to 2013, split into three sources as presented in the following table. GHG reductions are calculated on yearly basis with the relevant emission factors per year, and the source of power used for the affected systems. For example, GHG emission reductions for street lighting use the EDL grid emission factor, while that for decentralized PV generation uses the EDL and Private Generation grid emission factor.

Grid Emission Factor (Tons CO ₂ eq/KWh)	2011	2012	2013
EDL	0.667096	0.667096	0.667096
Private Generation	0.710861	0.710861	0.710861
EDL + Private Generation	0.682	0.682	0.682

Budget calculation

In most cases, budgets are provided by the implementing agency, the donor, or the supplier. In case this data is not made available, the following assumptions are used:

Category	Assumptions	References
PV	The average yearly system budget as reported in the 2015	MoEW/UNDP/GEF, 2017
	Solar PV Status Report for Lebanon (MoEW/UNDP/GEF,	MoE, 2017
	2017) is used. This is provided in USD/kWp for years prior to	
	2010, where no cost per kWp is available, the 2010 average	
	is used.	
PV Public Street	For some installations, average pole price for the installation	UNEP, 2016
Lights	year is used	
Certified Green	Green building energy measures are not presented with	ASHRAE, 2009
Buildings	budgets. The implementation cost is estimated using	
	average payback period of 10 years and average energy cost	
	of 12 USC/kWh.	
Energy	When energy efficiency measures are not presented with	CEDRO, 2017
Conservation	budgets, the implementation cost is estimated using average	
Measures	payback period of 5 years and average energy cost of 12	
	USC/kWh. This value is a result of more than 200 energy	
	efficiency measures studies and financial feasibility analysis.	

Capacity and energy efficiency factors

Energy generation potential for renewable energy sources is dependent on the deployed technology and the available resources in the country. In order to quantify the generated energy, capacity factors (kWh/kW) rates are used for the different technologies. These factors are collected from national and international reports and publications. The capacity factor is only used when there is no reported energy savings for the undertaken initiative.

Category	kWh/kW	Reference
PV	1,500	MoEW/UNDP/GEF, 2017
Wind	1,727	CEDRO, 2017
SWH	1,006	UNEP, 2016
PVPSL	2,920	LCEC, 2017a
PV Pumping	1,350	MoEW/UNDP/GEF, 2017
PV-Wind	1,433	CEDRO, 2017
Hydro	3,000	Expert judgment
Biomass	2,000	Expert judgment

Capacity factors of RE systems

In order to calculate savings energy efficiency factors, lifespan, degradation and other parameters are estimated as per the following assumptions:

Assumptions for calculating savings from energy efficiency

Category	Assumptions	References
Energy Efficient Street Lighting	Photosensor and timers installed on a public street lighting pole save an average of 74.47 kWh/year. This value is reported by LCEC in the NEEAP	MoEW/LCEC, 2016
Certified Green Buildings	 Quantification of energy savings is done collecting the following information: Building size in m2 (from company website or USGBC database) Business as usual consumption based on ASHRAE standards (Ref #6) Energy consumption reduction is based on the EAC1 score, which identifies the % of energy consumption reduction compared to BAU" 	ASHRAE, 2009
Energy Conservation Measures	Green roofs save an average of 5.26 kWh/m ² per year. This value is a result of an energy modeling performed to a conditioned last roof floor.	CEDRO, 2017

Assumptions for calculating lifespan and degradation

Category	Lifespan	Degradation	Market Characteristics
Solar PV Panels	Lifespan of PV panels is considered 25 years (MoEW/UNDP/GEF, 2017; MoE, 2017)	Efficiency degradation of 0.4% per year for PV panels (MoEW/UNDP/GEF, 2017; MoE, 2017)	
Solar Public Street Lighting	The lifespan used is only four years. Although these systems live longer, but it has been observed that systems are no longer in operation after 4 years, due to the need for new batteries that cannot be afforded by municipalities (UNEP, 2016)		Data available is related to number of poles but not power capacity. In order to quantify the power capacity

	Lebanor	r's Second Blennial Update R	eport to the UNFCCC
			of the system, averages of 120 W/pole and 240 W/pole are used (UNEP, 2016)
Energy Efficient Street Lighting	LED Lamps live for around 50,000 hours. With an average of 10 hrs of		
Solar Water Heaters	Lifespan of SWH systems is considered 25 years (MoEW/LCEC, 2011)	Efficiency degradation of 0.25% per year for solar thermal panels (MoEW/LCEC, 2011)	Average system cost: \$370/m ² Average system collection area: 4.12 m ² kW capacity per m2: 0.7 kW/m ² Energy saving potential: 704 kWh/m ² (MoEW/LCEC, 2011)
Biomass Boilers	Lifespan of stoves is considered 25 years (Jordan and Kurtz, 2012)		2011)
Other Renewable Energy	The installed micro-hydro system worked for 2 years only and then stopped operation (expert judgment)		

For installations taking place before 2012, and in order to quantify the energy saving potential, cumulative installed capacity is assumed to be installed in the middle of the timeframe of the initiative. Collected data is provided on yearly basis not monthly basis, so there is no exact reference of the period of initiative implementation (beginning of year or end of year). An assumption that it is being implemented on the 1st of July, thus multiplying kWh and GHG emissions by 0.5.

3. Individual Factsheets on energy mitigation actions

Decentralized Solar PV Installations							
Solar PV installatio	ons in residences, comme	ercial institutions, and in	dustrial facilities for pow	er generation.			
Source of funding	Private	Private NEEREA Donor Government					
Implementing agency	Private Companies	LCEC-BDL	CEDRO-UNDP	-			
Geographic Coverage	Lebanon	Lebanon	Lebanon	-			
Budget (USD)	\$14,648,293	\$12,342,796	\$12,955,338	\$0			
Capacity (kW)	4,092	3,758	611	0			
kWh Saving/yr	6,524,468	5,651,280	963,975	0			
Gg CO2 Reduction/yr	4.462	3.862	0.925	0.000			
kWh Avoided/yr	0	0	0	0			
Gg CO2 Avoided/yr	0.000	0.000	0.000	0.000			

Timeframe	2000 - 2016			
	Reduction of GHG er	nissions by EDL and priva	ate generation	
Goals	Spread of decentrali	zed power generation		
	Promotion of renews	able energy as an alterna	ative source of power to	diesel generators
				1
	Cum. Energy Savings (kWh)	Cum. CO ₂ Reduction (Gg of CO ₂ eq.)	Cum. Energy Avoided (kWh)	Cum. CO ₂ Avoided (Gg of CO ₂ eq.)
2013	3,897,184	2.811	0	0.000
2030	213,880,900	150.595	0	0.000
	1			
	Initiative budget is ca	alculated using yearly sys	stem budget (USD/kWp)	as reported in Ref #1
	Cost rate for years prior to 2010 are not available, thus 2010 average is used for earlier years.			
	Lifespan of PV panels is considered 25 years (according to market data)			
	Efficiency degradation of 0.4% per year for PV panels as reported by NREL (Ref #8)			
Methodology &	Average capacity fac	tor for PV generators is o	considered 1500 kWh/k	W
Assumptions	Emission factor used mix in that year (Ref #2	for EDL with private ger ?)	neration, varying by year	r based on the energy
	Collected data is provided on yearly basis not monthly basis, so there is no exact reference of the period of initiative implementation (beginning of year or end of year). An assumption			
	that it is being impleme 0.5	ented on the 1st of July,	thus multiplying kWh an	nd GHG emissions by
	For installations taking	ng place before 2012, an	nd in order to quantify th med to be installed in the	e energy saving
	timeframe of the initia	tive		
	Installations before 2	012 are available in cur	aulative numbers. Thus t	the average emission
	factor and budget estir	nate for the year 2010 a	nd 2011 are used	
Gaps & Constraints	Data collected for P	/ installations are suppose performed does not cover	sed to be covering the w	hole Lebanese
	Donor funded project	cts include CEDRO implei	mentations only. Other of	donor-funded
	installations that might	have taken place are wi	ithin the privately-install	eu cumulative values

Solar-Powered Water Pumping						
	Solar PV installations for	agricultural application	s and water pumping			
Source of funding	funding Private NEEREA Donor Government					
Implementing agency	Private Companies	LCEC-BDL	USAID-OTI & UNDP	-		
Geographic Coverage	Lebanon	Lebanon	Bekaa	-		
Budget (USD)	\$1,251,915	\$10,478,096	\$151,000	\$0		
Capacity (kW)	507	1,220	91	0		
kWh Saving/yr	684,450	1,647,000	122,850	0		
Gg CO ₂ Reduction/yr	0.475	0.844	0.087	0.000		
kWh Avoided/yr	0	0	0	0		

	L	ebanon's Second Bieni	nial Update Report to the	ne UNFCCC	
Gg CO ₂ Avoided/yr	0.000	0.000	0.000	0.000	
	-				
Timeframe	2000 - 2016				
Cash	Reduction of GHG er	missions by EDL and priv	ate generation		
Goals	Promotion of solar pumping as an alternative solution to onsite diesel generators				
	Cum. Energy Savings (kWh)Cum. CO2 Reduction (Gg of CO2 eq.)Cum. Energy Avoided (kWh)Cum. CO2 Avoided (Gg of CO2 eq.)				
2013	91,433	0.062	0	0.000	
2030	39,061,975	22.214	0	0.000	
	Initiative budget is calculated using yearly system budget (USD/kWp) as reported in R				
	Lifespan of PV panels is considered 25 years (according to market data)				
	Efficiency degradation of 0.4% per year for PV panels as reported by NREL (Ref #8)				
	Average capacity factor for PV generators is considered 1350 kWh/kW				
Methodology & Assumptions	Emission factor used for EDL with private generation, varying by year based on the energy mix in that year (Ref #2)				
	Collected data is provided on yearly basis not monthly basis, so there is no exact reference of the period of initiative implementation (beginning of year or end of year). An assumption that it is being implemented on the 1st of July, thus multiplying kWh and GHG emissions by 0.5				
	For installations taking place before 2012, and in order to quantify the energy savin potential, cumulative installed capacity is assumed to be installed in the middle of the timeframe of the initiative				
	Data collected for PN market, yet the survev	/ installations are supposi performed does not cov	sed to be covering the w ver 100% of the suppliers	hole Lebanese s in Lebanon	
Gaps & Constraints	Donor funded project funded installations that values	ts include USAID and UN at might have taken plac	NDP implementations or e are within the privatel	ly. Other donor- y-installed cumulative	

Solar-Powered Public Street Lighting						
Solar PV for p	ublic streetlights. Inclue	des addition of new pole	es and replacement of exis	ting poles		
Source of funding	Private	Private NEEREA Donor Government				
Implementing agency	-	-	UNDP, UNIFIL	MPW, MEW		
Geographic Coverage	-	-	Lebanon	Lebanon		
Budget (USD)	\$0	\$0	\$2,807,000	\$4,853,533		
Capacity (kW)	0	0	354	433		
kWh Saving/yr	0	0	0	1,264,360		
Gg CO ₂ Reduction/yr	0.000	0.000	0.000	0.864		
kWh Avoided/yr	0	0	1,032,979	0		
Gg CO₂ Avoided/yr	0.000	0.000	0.625	0.000		

Timeframe	2012 - 2016					
	Reduction of GHG emissions by EDL and private generation					
Goals	Improving safety and	d enhancing security leve	els in rural areas			
	Promotion of decent	ralized street lighting so	lutions			
	1					
	Cum. Energy Savings (kWh)Cum. CO2 Reduction (Gg of CO2 eq.)Cum. Energy Avoided (kWh)Cum. CO2 Avoided (Gg of CO2 eq.)					
2013	471,148	0.314	79,223	0.025		
2030	21,043,149	14.369	4,629,813	2.802		
	Budget data are collected from publications when available. If not available, average pole price for the year is used Data available is related to number of poles but not power capacity. In order to quantify the power capacity of the system, averages of 120 W/pole and 240 W/pole are used Lifespan of 4 years is used. Although these systems live longer, but it has been observed			In order to quantify pole are used has been observed		
	that systems are no longer in operation after 4 years, due to the need for new batteries that cannot be afforded by municipalities Efficiency degradation of 0.4% per year for PV panels as reported by NREL (Ref #8)					
Methodology &	Average capacity factor for PV street lights is considered 2920 kWh/kW					
Assumptions	Collected data is exercised on works basic net work to be in an there is no the energy mix in that year (Ref #2)					
	Collected data is provided on yearly basis not monthly basis, so there is no exact reference of the period of initiative implementation (beginning of year or end of year). An assumption that it is being implemented on the 1st of July, thus multiplying kWh and GHG emissions by 0.5					
	Data about installed report	systems are collected fro	om UNDP, MEW, Newsp	apers, and the PSL		
	For installations taking place before 2012, and in order to quantify the energy saving potential, cumulative installed capacity is assumed to be installed in the middle of the timeframe of the initiative					
	Installations before "	012 are available in cum	aulativo numbors. Thus t	the average emission		
	factor and budget estir	nate for the year 2010 a	nd 2011 are used	the average emission		
Gaps & Constraints	There is no national	report that provides acc	urate numbers about ins	stallations		
	Donor funded projec Other donor-funded in installed cumulative va	cts include CEDRO, UNIFI stallations that might ha lues	L, and Live Lebanon imp ve taken place are withi	lementations only. n the privately-		

Energy-Efficient Public Street Lighting						
Replacement of exis	Replacement of existing HPS and LPS street lamps with LED street lamps and the use of photocells and timers					
Source of funding	Private NEEREA Donor Government					
Implementing agency	-	-	CEDRO-UNDP	-		
Geographic Coverage	-	-	Lebanon	-		
Budget (USD)	\$0	\$0	\$242,000	\$64,345		
Capacity (kW)	0	0	44	0		
kWh Saving/yr	0	0	127,195	109,843		

Gg CO ₂ Reduction/yr	0.000	0.000	0.085	0.073
kWh Avoided/yr	0	0	0	0
Gg CO ₂ Avoided/yr	0.000	0.000	0.000	0.000
	1			I
Timeframe	2012 - 2013			
	Reduction of GHG er	missions by EDL and priv	ate generation	
Goals	Improving safety and	d enhancing security leve	els in rural areas	
	Reduction of wasted	energy and programmi	ng street lights to operat	e when needed only
	Cum. Energy Savings (kWh)	Cum. CO ₂ Reduction (Gg of CO ₂ eq.)	Cum. Energy Avoided (kWh)	Cum. CO ₂ Avoided (Gg of CO ₂ eq.)
2013	245,714	0.164	0	0.000
2030	3,508,568	2.341	0	0.000
	Emission factor used mix in that year (Ref #2	l for EDL with private ger 2)	neration, varying by year	based on the energy
	LED Lamps live for a	round 50,000 hours. Wit	h an average of 10 hrs o	f operation a day
Methodology & Assumptions	Collected data is provided on yearly basis not monthly basis, so there is no exact reference of the period of initiative implementation (beginning of year or end of year). An assumption that it is being implemented on the 1st of July, thus multiplying kWh and GHG emissions by 0.5			e is no exact reference year). An assumption d GHG emissions by
	According to MEW and	NEEAP, Photosensor an	d timers save 74.47 kWł	n/yr
	For installations taking place before 2012, and in order to quantify the energy saving potential, cumulative installed capacity is assumed to be installed in the middle of the timeframe of the initiative			e energy saving e middle of the
Gaps & Constraints	Savings are calculate properly maintained. In maintained, which redu	ed assuming all photoser n fact some were installe uces their performance a	nsor and timers are instand and at a later stage, and or and saving potential	lled immediately and thers are not properly

Solar Water Heating				
solar wate	er heating systems in res	idential, commercial, inc	dustrial, and public instit	utions
Source of funding	Private	NEEREA	Donor	Government
Implementing agency	Private Companies	LCEC-BDL	CEDRO, SIDA, Ital Coop	-
Geographic Coverage	Lebanon	Lebanon	Lebanon	-
Budget (USD)	\$104,833,196	\$6,666,304	\$2,298,108	\$0
Capacity (kW)	404,761	25,739	5,012	0
kWh Saving/yr	310,885,189	20,211,011	5,776,572	0
Gg CO₂ Reduction/yr	167.362	13.990	4.017	0.000
kWh Avoided/yr	0	0	0	0
Gg CO ₂ Avoided/yr	0.000	0.000	0.000	0.000

Timeframe	2008 - 2015				
	Reduction of GHG er	missions by EDL and priva	ate generation		
Goals	Spread of solar wate heaters	r heaters as an alternativ	ve solution to diesel boi	ilers and electric	
	Supporting the natio	Supporting the national program of a SWH to every house			
	Cum. Energy Savings (kWh)	Cum. CO ₂ Reduction (Gg of CO ₂ eq.)	Cum. Energy Avoided (kWh)	Cum. CO ₂ Avoided (Gg of CO ₂ eq.)	
2013	358,650,466	246.269	0	0.000	
2030	5,943,454,981	3,325.378	0	0.000	
	Using the GSWH report by UNEP & LCEC, the following factors are used: - Average system cost: \$370/m ² - Average system collection area: 4.12 m ² - kW capacity per m2: 0.7 kW/m ² - Energy saving potential: 704 kWh/m ²			sed:	
	Lifespan of SWH systems is considered 25 years (according to market data)				
Methodology &	Efficiency degradation of 0.25% per year for solar panels is used				
Assumptions	mix in that year (Ref #2)				
	Collected data is provided on yearly basis not monthly basis, so there is no exact reference of the period of initiative implementation (beginning of year or end of year). An assumption that it is being implemented on the 1st of July, thus multiplying kWh and GHG emissions by 0.5				
	For installations taking potential, cumulative in timeframe of the initial	ng place before 2012, an nstalled capacity is assun tive	d in order to quantify tl ned to be installed in th	he energy saving e middle of the	
	Installations before 3	2012 are available in cur	ulative numbers. Thus	the average emission	
	factor and budget estir	nate for the year 2010 a	nd 2011 are used		
Gaps & Constraints	Data collected for SV market, yet the survey	VH installations are supp performed does not cov	osed to be covering the er 100% of the supplier	e whole Lebanese s in Lebanon	
	Donor funded projects include CEDRO, SIDA, and Italian Cooperation implementations only. Other donor-funded installations that might have taken place are within the privately- installed cumulative values				

Certified Green Buildings Certified green buildings under the BREEAM and LEED schemes Source of funding Private NEEREA Donor Government Implementing agency Private Companies --_ **Geographic Coverage** Lebanon ---Budget (USD) \$29,468,962 \$0 \$0 \$0 0 0 Capacity (kW) 0 0 0 0 0 kWh Saving/yr 0 Gg CO₂ Reduction/yr 0.000 0.000 0.000 0.000 kWh Avoided/yr 24,557,468 0 0 0

	Lebanon's Second Biennial Update Report to the UNFCCC				
Gg CO2 Avoided/yr	16.752	0.000	0.000	0.000	
	1			I	
Timeframe	2012 - 2016				
Cash	Reduction of GHG er	missions by EDL and priv	ate generation		
Goals	Promoting green building concepts in new constructions				
	1	1		1	
	Cum. Energy Savings (kWh)	Cum. CO ₂ Reduction (Gg of CO ₂ eq.)	Cum. Energy Avoided (kWh)	Cum. CO ₂ Avoided (Gg of CO ₂ eq.)	
2013	0	0.000	1,326,310	0.905	
2030	0	0.000	378,226,515	258.011	
	1	•			
	Data about certified #13)	buildings is collected fro	m USGBC and BREEAM	database (Ref #12, Ref	
Methodology &	Quantification of energy savings is done collecting the following information: - Building size in m ² (from company website or USGBC database) - Business as usual consumption based on ASHRAE standards (Ref #6) - Energy consumption reduction is based on the EAC1 score, which identifies the % of energy consumption reduction compared to BAU				
Assumptions	Budget is estimated USC	using average payback p	eriod of 10 years and av	verage kWh cost of 12	
	Emission factor used for EDL with private generation, varying by year based on the energy mix in that year (Ref #2)				
	Collected data is provided on yearly basis not monthly basis, so there is no exact reference of the period of initiative implementation (beginning of year or end of year). An assumption that it is being implemented on the 1st of July, thus multiplying kWh and GHG emissions by 0.5				
Gans & Constraints	Budget related to en	pergy saving measures ca	unnot he made available		
Caps & Constraints		ier by saving measures to			

Energy Conservation Measures						
Implemented energy co	Implemented energy conservation measures by energy audit companies and ESCOS, including measures related to					
Source of funding	Private	Private NEEREA Donor Government				
Implementing agency	Private Companies	LCEC-BDL	-	-		
Geographic Coverage	Lebanon	Lebanon	-	-		
Budget (USD)	\$669,000	\$0	\$350,000	\$0		
Capacity (kW)	0	0	0	0		
kWh Saving/yr	1,150,000	0	4,268	0		
Gg CO₂ Reduction/yr	0.802	0.000	0.003	0.000		
kWh Avoided/yr	0	0	0	0		
Gg CO ₂ Avoided/yr	0.000	0.000	0.000	0.000		
Timeframe	2000 - 2015					

Goals	Reduction of GHG emissions by EDL and private generation

	Reducing energy wastage and improving system efficiency			
	Cum. Energy Savings (kWh)	Cum. CO ₂ Reduction (Gg of CO ₂ eq.)	Cum. Energy Avoided (kWh)	Cum. CO2 Avoided (Gg of CO2 eq.)
2013	240,000	0.166	0	0.000
2030	18,375,423	12.815	0	0.000
	Data is collected from least 90% of the marke	m the most active energy t	y audit companies in Leb	banon, covering at
	Emission factor used for EDL with private generation, varying by year based on the energy mix in that year (Ref #2)			
Methodology & Assumptions	Collected data is provided on yearly basis not monthly basis, so there is no exact reference of the period of initiative implementation (beginning of year or end of year). An assumption that it is being implemented on the 1st of July, thus multiplying kWh and GHG emissions by 0.5			
	For installations taking place before 2012, and in order to quantify the energy saving potential, cumulative installed capacity is assumed to be installed in the middle of the timeframe of the initiative		ne energy saving e middle of the	
	Database is based on personal communication with energy audit companies			
Gaps & Constraints Data might not be	Data might not be co	overing 100% of the perf	ormed activities	

Biomass Space Heating				
Biomass and pellet stoves for space heating				
Source of funding	Private	NEEREA	Donor	Government
Implementing agency	Private Companies	LCEC-BDL	CEDRO-UNDP	-
Geographic Coverage	Lebanon	Lebanon	Lebanon	-
Budget (USD)	\$12,000	\$0	\$125,000	\$0
Capacity (kW)	360	0	5,000	0
kWh Saving/yr	1,078,000	0	10,000,000	0
Gg CO ₂ Reduction/yr	0.736	0.000	6.863	0.000
kWh Avoided/yr	0	0	0	0
Gg CO ₂ Avoided/yr	0.000	0.000	0.000	0.000
Timeframe	2008 - 2016			
Goole	Reduction of GHG emissions by EDL and private generation			
Guais	Avoiding diesel heaters and using pellets stove as an alternative and sustainable solution		sustainable solution	
	Cum. Energy Savings (kWh)	Cum. CO ₂ Reduction (Gg of CO ₂ eq.)	Cum. Energy Avoided (kWh)	Cum. CO2 Avoided (Gg of CO2 eq.)
2013	2,029,000	1.384	0	0.000

2030	185,205,000	127.032	0	0.000	
	Data is collected from	m suppliers directly			
	Budgets and prices are collected from suppliers and implementing agencies				
	Lifespan of stoves is	considered 25 years (acc	cording to market data)		
	Average capacity fac	ctor for pellet stoves is co	onsidered 2000 kWh/kW	,	
Methodology & Assumptions	bology & Emission factor used for EDL with private generation, varying by year based on the emission factor used for EDL with private generation, varying by year based on the emission factor used for EDL with private generation, varying by year based on the emission factor used for EDL with private generation, varying by year based on the emission factor used for EDL with private generation, varying by year based on the emission factor used for EDL with private generation, varying by year based on the emission factor used for EDL with private generation, varying by year based on the emission factor used for EDL with private generation, varying by year based on the emission factor used for EDL with private generation, varying by year based on the emission factor used for EDL with private generation, varying by year based on the emission factor used for EDL with private generation, varying by year based on the emission factor used for EDL with private generation, varying by year based on the emission factor used for EDL with private generation, varying by year based on the emission factor used for EDL with private generation, varying by year based on the emission factor used for EDL with private generation, varying by year based on the emission factor used for EDL with private generation, varying by year based on the emission factor used for EDL with private generation, varying by year based on the emission factor used for EDL with private generation, varying by year based on the emission factor used for EDL with private generation, varying by year based on the emission factor used for EDL with private generation, varying by year based on the emission factor used factor used for EDL with private generation factor used factor use				
	Collected data is provided on yearly basis not monthly basis, so there is no exact reference of the period of initiative implementation (beginning of year or end of year). An assumption that it is being implemented on the 1st of July, thus multiplying kWh and GHG emissions by 0.5				
	For installations taki potential, cumulative in timeframe of the initia	ng place before 2012, ar nstalled capacity is assur tive	nd in order to quantify th ned to be installed in the	e energy saving e middle of the	
	The major supplier of biomass pellets only is involved in this activity. There were no other major initiatives undertaken during the reporting period				
Gaps & Constraints	It is not clear what these stoves are replacing, thus the emission factor used is for EDL and private generators. In some cases, these stoves might be replacing diesel heaters.				
	The average saving of international market d	of 2000 kWh per installed ata. No similar data is av	d kW is a rough estimate ailable for these systems	e based on s in Lebanon.	

Other Renewables				
Oth	Other renewable technologies including wind, hydro, geothermal, and others			
Source of funding	Private	NEEREA	Donor	Government
Implementing agency	-	-	CEDRO-UNDP	-
Geographic Coverage	-	-	Lebanon	-
Budget (USD)	\$0	\$0	\$420,000	\$0
Capacity (kW)	0	0	87	0
kWh Saving/yr	0	0	104,681	0
Gg CO ₂ Reduction/yr	0.000	0.000	0.072	0.000
kWh Avoided/yr	0	0	0	0
Gg CO ₂ Avoided/yr	0.000	0.000	0.000	0.000
Timeframe	2013 - 2014			
	Reduction of GHG emissions by EDL and private generation			
Goals	Spread of decentrali	zed power generation		
	Promotion of renew	able energy as an alterna	ative source of power to	diesel generators
	Cum. Energy Savings (kWh)	Cum. CO ₂ Reduction (Gg of CO ₂ eq.)	Cum. Energy Avoided (kWh)	Cum. CO ₂ Avoided (Gg of CO ₂ eq.)
2013	28,823	0.020	0	0.000

2030	1,289,297	0.886	0	0.000		
	Data is collected from	m CEDRO-UNDP regardir	ng implemented pilot pro	ojects		
	Lifespan of PV panel	Lifespan of PV panels is considered 25 years (according to market data)				
	Efficiency degradation	on of 0.4% per year for P	V panels as reported by	NREL (Ref #8)		
	Average capacity fac	tor for PV generators is	considered 1500 kWh/k\	N		
Methodology &	Average capacity factor for wind generators is considered 1433 kWh/kW					
Assumptions	Average capacity factor for hydro generators is considered 3000 kWh/kW					
	Emission factor used for EDL with private generation, varying by year based on the energy mix in that year (Ref #2)					
	Collected data is provided on yearly basis not monthly basis, so there is no exact re- of the period of initiative implementation (beginning of year or end of year). An assun that it is being implemented on the 1st of July, thus multiplying kWh and GHG emissio 0.5					
	The installed micro-l	nydro system worked for	[•] 2 years only and then s	topped operation		
Gaps & Constraints	Installations done by minor effect on the cur	<pre>/ private sector could no mulative values</pre>	t be quantified. Yet they	are expected to have		

Other Energy Efficiency Measures

Energy efficiency measures undertaken by the public and private sector including energy efficient lighting, equipment, and others				
Source of funding	Private NEEREA Donor Government			
Implementing agency	-	-	-	MEW
Geographic Coverage	-	-	-	Lebanon
Budget (USD)	\$0	\$0	\$0	\$7,000,000
Capacity (kW)	0	0	0	0
kWh Saving/yr	0	0	0	255,052,875
Gg CO ₂ Reduction/yr	0.000	0.000	0.000	173.962
kWh Avoided/yr	0	0	0	0
Gg CO ₂ Avoided/yr	0.000 0.000 0.000 0.000		0.000	
Timeframe	2011 - 2012			
Goals	Reduction of GHG er	missions by EDL and prive	ate generation	
Guais	Spread of decentralized power generation			
	Cum. Energy Savings (kWh)	Cum. CO ₂ Reduction (Gg of CO ₂ eq.)	Cum. Energy Avoided (kWh)	Cum. CO ₂ Avoided (Gg of CO ₂ eq.)
2013	382,579,313	260.943	0	0.000
2030	2,456,776,437	1,675.676	0	0.000

	Data is collected from MEW's NEEAP
	Lifespan of CFLs is considered 10,000 hours (according to market data)
	Average working hours per day is considered 3 hours (according to LCEC)
Methodology &	Emission factor used for EDL with private generation, varying by year based on the energy mix in that year (Ref #2)
Assumptions	Collected data is provided on yearly basis not monthly basis, so there is no exact reference of the period of initiative implementation (beginning of year or end of year). An assumption that it is being implemented on the 1 st of July, thus multiplying kWh and GHG emissions by 0.5
	23W CFLs are distributed, to be replacing 100W lamps
Gaps & Constraints	Installations done by private sector could not be quantified. Yet they are expected to have minor effect on the cumulative values
	The 23W lamps might be replacing incandescent lamps with less than 100W, or maybe installed as new lamps. There is no accurate data about the replace lamps.

Zouk ICE 194 MW (HFO)

General Information: A base load power plant based on ten (10) units of four-stroke medium speed diesel engines, type 18V48/60B is under construction at Zouk site. The engines are of the well-known family of medium speed diesel engines designed and supplied by MAN Diesel & Turbo SE, which has a longstanding experience in providing diesel engines for reliable base load operation. The selected engines will provide dependable power production and high availability ensuring optimal plant performance versus investment cost. The plant design utilizes the energy in the exhaust gases and the hot cooling water from the engines in order to improve the efficiency of the plant by installation of exhaust heat recovery boilers and steam turbine generator.

Zouk (Plant Heat Rate for 10 engines operation at 100% load running on HFO)

With STG: NHR = 7,603 kJ/kWh / Without STG: NHR = 8,067 kJ/kW

Implementing Agency	Ministry of Energy & Water
Geographical Coverage	Zouk
Budget	185,247,000 €
Timeframe	2013-2015
Source of Funding	Danish Export Bank - EKF, Via HSBC, Through MoF
Goals	Increase Generation Capacity
	Replace Private Generators with more efficient alternative
	Reduce Emissions
Achievements or Progress	Construction in Progress since 2013.
	Capacity: 194 MW
	Net Output: 1,580,479 MWh/Year
	HFO Consumption: 178.95 g/kWh or 282,827 tonnes HFO/Year
GHG Emission Reduction	2013: No emission reductions yet
	By 2030: 250,032 tonnes of CO _{2e} /year
Methodology & Assumptions	GHG emission reduction is calculated from the difference of using Private
	Generation to produce the same amount of Energy produced by the 4
	Reciprocating Engine Plant. PG would need 352,409 tonnes DO/Year to produce
	the same energy.

Jiyeh ICE 78.2 MW (HFO)

General Information: A base load power plant based on four (4) units of four-stroke medium speed diesel engines, type 18V48/60B is under construction at Jiyeh site. The engines are of the well-known family of medium speed diesel engines designed and supplied by MAN Diesel & Turbo SE, which has a longstanding experience in providing diesel engines for reliable base load operation. The selected engines will provide dependable power production and high availability ensuring optimal plant performance versus investment cost. The plant design utilizes the energy in the exhaust gases and the hot cooling water from the engines in order to improve the efficiency of the plant by installation of exhaust heat recovery boilers and steam turbine generator.

Jiyeh (Plant Heat Rate for 4 engines operation at 100% load running on HFO) With STG: NHR = 7,629 kJ/kWh / Without STG: NHR = 8,188 kJ/kWh

Implementing Agency	Ministry of Energy & Water
Geographical Coverage	Jiyeh
Budget	83,978,000 €
Timeframe	2013-2015
Source of Funding	Danish Export Bank - EKF, Via HSBC, Through MoF
Goals	Increase Generation Capacity
	Replace Private Generators with more efficient alternative
	Reduce Emissions
Achievements or Progress	Construction in Progress since 2013.
	Capacity: 78.2 MW
	Net Output: 637,080 MWh/Year
	HFO Consumption: 179.56 g/kWh or 114,005 tonnes HFO/Year
GHG Emission Reduction Expected	2013: No emission reductions yet
	By 2030: 100,788 tonnes of CO _{2e} /year
Methodology & Assumptions	GHG emission reduction is calculated from the difference of using Private
	Generation to produce the same amount of Energy produced by the four stroke
	Reciprocating Engine Plant. PG would use 142,054 tonnes DO/Year to produce the
	same amount of Energy.

DACCPP II 539.2 MW (HFO)

General Information: A complete indoor gas turbine plant is under construction at Deir Ammar site, comprising 3 Gas Turbines suitable for combined cycle operation burning Natural Gas fuel and also liquid fuels (Light Fuel Oil and Heavy Fuel Oil) with Nox control system (water/steam injection as e.g.). The plant is also equipped with a mini Hydro unit at the condenser outlet to improve the efficiency.

DACCPP II (Plant Heat Rate at 100% load running on HFO) With STG & HYDRO: NHR = 7,209 kJ/kWh / NPO=539.2 MW DACCPP II (Plant Heat Rate at 100% load running on NG)

With STG & HYDRO: NHR = 7,126.5 kJ/kWh / NPO=569.4 MW

· · · · ·	, ,
Implementing Agency	Ministry of Energy & Water
Geographical Coverage	Deir Ammar
Budget	360,966,000 €
Timeframe	2013-2016
Source of Funding	GoL
Goals	Increase Generation Capacity Replace Private Generators with more efficient alternative Reduce Emissions
Achievements or Progress	Construction in Progress since 2013. Capacity: 539.2 MW Net Output: 3,679,200 MWh/Year HFO Consumption: 177.56 g/kWh or 653,278 tonnes/year

GHG Emission Reduction	2013: No emission reductions yet By 2030: 597,849 tonnes of CO _{2e} /year
Methodology & Assumptions	GHG emission reduction is calculated from the difference of using Private Generation to produce the same amount of Energy produced by the four stroke Reciprocating Engine Plant. PG would use 820,373 tonnes DO/year to produce the same amount of Energy.

ZCCPP 33.5MW Upgrade (DO)

General Information: The CMF+ upgrade applies the latest design Controlled Diffusion Airfoil (CDA) compressor blades to the V94.2 Gas Turbine. This allows a significant increase in compressor mass flow by approximately 3,5%, augmenting the power output of the GT and the subsequent Steam Turbine (ST) in combined cycle operation.

The Si3D upgrade superior design, material and coatings leads to a substantial improvement in turbine performance, and increases the overall power output and efficiency of the gas turbine.

ZCCPP (At 100% load BEFORE the Upgrade)

With STG: NPO=435 MW

ZCCPP (At 100% load AFTER the Upgrade)

With STG: NPO=468.5 MW

Implementing Agency	EDL
Geographical Coverage	Zahrani
Budget	Upgrade cost around 27,500,000 \$
Timeframe	2013-2014
Source of Funding	GoL
Goals	Increase the Power Output
	Improve the Plant Efficiency
Achievements or Progress	Capacity Increase: 33.5 MW
	Net Output: 249,441MWh/year
	DO Consumption for Additional Capacity: ZERO tonne/Year
GHG Emission Reduction	By 2013: No emission reductions yet
	By 2030: 177,315 tonnes of CO _{2e} /year
Methodology & Assumptions	GHG emission reduction is calculated from the PG power generation that have been displaced by the additional capacity.

DACCPP I 29.5MW Upgrade (DO)

General Information:

The CMF+ upgrade applies the latest design Controlled Diffusion Airfoil (CDA) compressor

blades to the V94.2 Gas Turbine. This allows a significant increase in compressor mass flow by approximately 3,5%, augmenting the power output of the GT and the subsequent Steam Turbine (ST) in combined cycle operation.

The Si3D upgrade superior design, material and coatings leads to a substantial

improvement in turbine performance, and increases the overall power output and efficiency of the gas turbine.

DACCPP I (At 100% load BEFORE the Upgrade)

With STG: NPO=435 MW

DACCPP I (At 100% load AFTER the Upgrade)

With STG: NPO=464.5 MW

Implementing Agency	EDL	
Geographical Coverage	Deir Ammar	
Budget	Upgrade cost around 27,500,000 \$	
Timeframe	2013-2014	
Source of Funding	GoL	
Goals	Increase the Power Output	

	Improve the Plant Efficiency
Achievements or Progress	Capacity Increase: 29.5 MW Net Output: 219,657MWh/year DO Consumption for Additional Capacity: ZERO tonnes/Year
GHG Emission Reduction	By 2013: No emission reductions yet By 2030: 156,143 tonnes of CO _{2e} /year
Methodology & Assumptions	GHG emission reduction is calculated from the PG power generation that have been displaced by the additional capacity.

HFO Conditioning Zouk Power Plant

General Information: The improvement of the quality of HFO before boiler furnace combustion has a significant effect on the emissions as well as the combustion efficiency. Preheating, water washing for salt removal and vanadium inhibitor addition (magnesium additive) as fuel oil clean up measures are typical.

An HFO conditioning solution has been implemented at Zouk Thermal Power Plant with the following results:

ltem	Parameter	Baseline Value	Average Achieved Values with HFO Conditioning (normalized to 3% O ₂)	Achieved Reduction / Amelioration Values (normalized to 3% O ₂)
1	Particulate matter (PM)	331 (mg/Nm ³)	71.26 (mg/Nm ³)	78.5 (%)
2	SO ₃	4.81 (mg/Nm ³)	0.428 (mg/Nm ³)	91 (%)
3	CO	1,049 (mg/Nm ³)	77.50 (mg/Nm ³)	92.6 (%)
4	NO _x	682.60 (mg/Nm ³)	481.00 (mg/Nm ³)	29.5 (%)
5	Fouling	Significant	Substantial Reduction	Substantial Reduction
6	Efficiency	91.71 (%)	92.92 (%)	+ 1.21 (%)
7	Acidity Effect (pH)	Significant	3.5 - 4.5	> 3.5

Implementing Agency	EDL		
Geographical Coverage	Zouk		
Budget	3,000,000 \$ / Year		
Timeframe	2013-2014		
Source of Funding	GoL		
Goals	Improve Combustion Efficiency		
	Reduce Fouling and Increase Unit Availability		
	Reduce Emissions		
	Saving in Operating Costs		
Achievements or Progress	HFO saving per year around 9,680 tonnes HFO/year		
GHG Emission Reduction Expected	By 2013: No emission reductions yet		
	By 2030: 29,895 tonnes of CO _{2e} /year		
Methodology & Assumptions	GHG emission reduction is calculated from the saving in HFO consumption to produce the same amount of Energy.		

PV Beirut River Snake Project			
General Information: BRSS is a 1 MWp solar PV farm built on the top of a river to generate an estimated 1,665 MWb/year			
Implementing Agency	LCEC		
Geographical Coverage	Beirut		
Budget	3,100,000 USD		
Timeframe	2013-2015		
Source of Funding	GoL		
Goals	Various capacity building and awareness raising on the technology		
	Benefit various public institutions with this technology		
Achievements or Progress	Capacity 1.08 MWp (Peak)		
	Annual saving is around 1,655 MWh/year		
GHG Emission Reduction	2013: no emission reductions yet		
	By 2030: 974 tonnes of CO _{2e} /year		
Methodology & Assumptions	GHG emission reduction is calculated from reduction of EDL usage and diesel electricity generation.		

Annex VII. Mitigation actions of LULUCF

1. Calculation methods of GHG emissions/removals from mitigation actions

The CO_2 removals in reforestation/afforestation projects are summarized in the following equation (in reference to IPCC GPG for LULUCF 2003 p. 3.51).

The calculation of annual change in carbon stocks in living biomass in Land converted to Forest land followed the following equation:

Plantations were assumed to take place on "Other Land". The values for A_{EXT_MAN} were taken from publications and personal communications conducted within the framework of the National Inventory of GHG emissions/removals from the LULUCF sector.

Based on default values, the calculated $G_{Total EXT_MAN}$ was 7.27075. The CF value was the default number of 0.5 and the value for R was taken from FAO (2005)³ as 0.27. Exact data on the quantity and the type of tree species planted were not available. Accordingly, it was assumed that planted trees were mostly coniferous. For the calculation of $G_{Total EXT_MAN}$, the value for G_W for plantations was taken as a default from the IPCC GPG Table 3A.1.6 as the average of (Asia/other species-Dry) 6.45 and (Asia/other species-Montane moist) 5 as 5.725 tonnes d.m. ha⁻¹ yr⁻¹.

Other assumptions for the calculation of annual change in carbon stocks in dead organic matter and annual change in carbon stocks in soils included no change in dead wood carbon and litter pool in lands converting to forest (Tier 1). Annual change in carbon stocks in soils was also assumed zero due to methodological uncertainties.

The employed extended methodology to estimate GHGs (CO_2 and non CO_2) directly released in fires was as follows (in reference to IPCC GPG for LULUCF 2003 p. 3.49):

ESTIMATION OF GHGS DIRECTLY RELEASED IN FIRES $L_{fire} = A \bullet B \bullet C \bullet D \bullet 10^{-6}$

Where:

L_{fire} = quantity of GHG released due to fire, tonnes

A = area burnt, ha

B = mass of 'available' fuel, kg d.m. ha^{-1}

C = combustion efficiency (or fraction of the biomass combusted), dimensionless.

 $D = Emission factor, g (kg d.m.)^{-1}$

The extent of burned areas (A) and fire affected fuel types were considered from the assessment conducted within the National Inventory Report of GHG emissions/removals from the LULUCF sector using approach 3. The mass of available fuel (B) was derived from the back mapping of the Prometheus fuel type classes4 and the extent of each type affected by fire:

Prometheus fuel type class	Mass of available fuel (Rothermel averages)		
1	5 tonnes/ha		
2	6.5 tonnes/ha		
3	12.5 tonnes/ha		
4	30 tonnes/ha		
5	9.5 tonnes/ha		
6, 7	12.5 tonnes/ha		

The value for C was taken as a default from the IPCC GPG as 0.5. The value of D was taken as default value for each GHG as follows:

Default from the IPCC GPG Table 3A.1.16 (Forest fires, Delmas et al. (1995); CH ₄) as 9 G/KG d.m
Default from the IPCC GPG Table 3A.1.16 (Forest fires, Delmas et al. (1995); CO) as 130 G/KG d.m
Default from the IPCC GPG Table 3A.1.16 (Forest fires, Delmas et al. (1995); N ₂ O) as 0.11 G/KG d.m
Default from the IPCC GPG Table 3A.1.16 (Forest fires, Delmas et al. (1995); NO _x) as 0.7 G/KG d.m

³ FAO (2005). National Forest and Tree Resources Assessment 2003-05 (TCP/LEB/2903). Working paper 95, Forest Resources Assessment, Forestry, Beirut.

⁴ Mitri et al. (2012). Forest fuel type mapping in Lebanon. 18th International science meeting. 22-24 March 2013. Lebanon.

Individual Factsheets on LULUCF mitigation actions

Development and implementation of pilot landscape restoration plans

Development and implementation of pilot landscape restoration plans		
General information: Reforestation and afforestation projects are conducted in the Shouf Biosphere Reserve to build resilience to climate change through adaptive forest landscape restoration. One of these projects is implemented within the framework of the 40 million trees programme, while the others are implemented with private sponsorships.		
Implementing agency	Al Shouf Cedar Society	
Geographical coverage	Barouk and the Municipalities of Barouk, Maasser el Shouf, Mristi (Mount Lebanon) and Saghbine (Beqaa)	
Budget	N.A.	
Timeframe	2013-2015	
Source of funding	MM1, Byblos bank, HSBC bank, European Commission (through MoA), Middle East Airlines, and the private sector.	
Goals	Increase resilience to climate change in an altitudinal and continental gradient, from the inner Bekaa Valley to the Mount Lebanon western range, connecting forest patches.	
Achievements or progress by	48.5 Ha	
2013	Removal of 0.646491 Gg of CO ₂ eq.	
Methodology	IPCC GPG for LULUCF 2003	
Assumptions	Assuming that each ha of planted land comprised 700 seedlings. Also, assuming that the seedlings were successfully planted and maintained over a total cumulative area of 125.5 ha by 2015.	

AFDC afforestation/reforestation projects				
General information: various restoration and afforestation activities				
Implementing agency	Association for Forests, Development and Conservation (AFDC)			
Geographical coverage	Jesr El Kadi, Deir Aamar, Ashash, Btater, Shartoun, Anjar, Rashaya,			
	Bqerzala, and Kfar Qouk.			
Budget	N.A.			
Timeframe	2013-2016			
Source of funding	Various sources including private sponsorships			
Goals	Restore degraded land and increase forest cover in Lebanon			
Achievements or progress by	16 ha			
2013	removal 0.213275 Gg of CO_2 eq.			
Methodology	IPCC GPG for LULUCF 2003			
Assumptions	Assuming that each ha of planted land comprised 700 seedlings. Also,			
	assuming that the seedlings were successfully planted and maintained			
	over a total area of 24.5 ha by 2015 and a total cumulative area of 82.5			
	ha by 2016.			

The Reforestation Initiative of the Ministry of Environment of Lebanon				
General information: MoE has executed from 2002 till 2014 reforestation activities in all Lebanese regions				
within the context of the National Reforestation Plan. These activities were achieved through two				
consecutive phases and have	tive phases and have covered the reforestation of approximately 834 hectares of forest lands in all			
the Lebanese Governorates w	ith contributions in some place from NGOs.			
Implementing agency	МоЕ			
Geographical coverage	All Lebanese territories			
Budget	In 2001, the Lebanese government allocated in the national budget 25 billion			
	Lebanese Pounds fund (approximately 16.67 million USD) scheduled over five			
	years for the execution of reforestation projects at the national level.			
Timeframe	2002-2014			
Source of funding	Government of Lebanon			
Goals	Restore the country's green cover loss throughout the years			
Achievements or progress by 2013	The reforestation of 834 hectares of forest lands fairly distributed in the five Muhafazat, as follows:			
	Mount Lebanon: 60 ba: Farava and Barouk -			
	45 ha: Hammana Damour Ehmei			
	North Lebanon: 60 ha: Akkar el Atiga, Ehden, Bcharri, Tannourine - 54 ha:			
	Kousba, Tannourine, Akkar el Atiga			
	Bekaa: 80 ha: Lala-Baaloul, Khirbet-Anafar, Qaa el Reem, Ras			
	Baalbeck, Chaat, Hermel, Rachaya, Jdita - 104 ha: Tajammoh Baladiyat El – Sahl*, Bouday, Chmestar, Al-Qaa, Al-fakeha-El Jadida, Baalbeck, Rachaya El-			
	Wadi, El-Hermel, Sehmor			
	South Lebanon: 50 ha: Jezzine, Al Qraye, Abbassie, Majdelzoun			
	Nabatieh: 55 ha: Kfar Rummane, Rmeich, Ebel el Saki, Marjeyoun, Hasbaya - 75 ha: Al-Rihan, Zawtar Esharkieh, El-Merwanieh, Kherbit Selem, Markaba			
	Other reforestation activities for a total of 251 ha involved NGOs. Some of			
	which involved large scale air seeding operations in coordination with the			
	Lebanese Army and some NGOs. Airplane seeding of pine and oak seeds over			
	a total area of 80 hectares in the regions of Jran. Jrabta. Kfifan. Rechmava.			
	Karm Saddeh, Kobeyat, Deir El-Kamar and Andkit was performed. Based on			
	the promising initial results obtained, this operation was followed with			
	similar applications in the regions of Dahr El-Ahmar, Karaoun and Bkifa over			
	another area of 80 hectares.			
Achievements or progress	9.72 Gg of CO_2 eq.			
by 2013				
Mathadalagy				
Assumptions	Assuming that each ha of planted land comprised 700 seedlings. Also,			
	assuming an annual average area of 104.25 ha was successfully planted and			
	maintained from 2005 throughout 2014.			

Jouzour Loubnan's reforestation and afforestation activities			
General information: Reforestation	n/afforestation activities we	re conducted betwee	en 2008 and 2013. Local
community groups were involved in	n reforestation activities whic	ch involved the use of	f native tree species.
Implementing agency	Jouzour Loubnan		
Geographical coverage	Chabrouh, Ehmej, Ainata, Harf Shlifa and Btedi in the Bekaa valley, Ibl Es Saki, Ehden, and Kfardebiane.		
Budget	946,659 USD (assuming an average cost of 7 USD per seedling for plantation and maintenance)		
Timeframe	2008-2014		
Source of funding	Different sources of funding including the EU, the private sector, and United States Agency for International Development (USAID) through Lebanon Reforestation Initiative		
Goals:	 Intervene mainly in arid mountainous regions as, on one hand, they are very often dismissed in forestation programs and, on the other hand, the benefits of such forestation are tremendous, and 2) empower local communities, and 3) to promote environmental awareness 		
Achievements or progress by 2013	Year	Area (ha)	Yearly CO_2 removal (Gg of CO_2 eq.)
	2008-2011	56.67	0.755395
	2012	46.22	0.616099
	2013	55.93	0.745531
	Total	158.82	2.117025
Total GHG removal by completion of action in 2014	2.575 Gg of CO_2 eq.		
Methodology	IPCC GPG for LULUCF 2003		
Assumptions	Assuming that 1) the seedlings were successfully planted and maintained, 2) each ha of planted land comprised 700 seedlings, and 3) the cumulative area of plantations consisted of 158.82 ha by 2013 distributed as 185 seedlings (in 2008), 5,680 seedlings (in 2010), 11,795 seedlings (in 2010), 22,009 seedlings in (2011), 32,358 seedlings (in 2012), and 39,155 seedlings (i.e., 55.93 ha in 2013)		

Lebanon Reforestation Initiative

General information: The Lebanon Reforestation Initiative, funded by USAID and implemented by the United States Forest Service (USFS), works towards providing a successful framework for longer-term technical and financial assistance to expand and protect Lebanon's forests for a sustainable future. The project favors a decentralized approach to engaging communities at the municipal level and focuses on 1) assisting native tree nurseries with technical improvements and enhanced business planning, 2) developing comprehensive forest mapping, 3) promoting the importance of reforestation and biodiversity through community-led activities that foster local ownership and forest sustainability, 4) supporting the planting of quality native seedlings, and 5) strengthening capacities to prevent respond to wildfires.

Implementing agency	Lebanon Reforestation Initiative in partnership with local community groups		
Geographical coverage	Tannourine, Bcharreh, Kfarzabad, Aanjar, Rashaya, El Qlaiaa, Ainata, Rmadyeh, and Maqne		
Budget	3,192,000 USD by 2015 (assuming an average cost of 7 USD per seedling for plantation and maintenance)		
Timeframe	2011-2018		
Source of funding	USAID		
Goals:	The Lebanon Reforestation Initiative aims to restore Lebanon's native forests and to install commitment to reforestation and wildfire prevention and response, through capacity building of local communities and organizations.		
Achievements or progress	Year	Area (ha)	Yearly CO_2 removal (Gg of CO_2 eq.)
	2011	108.69	1.448806
	2012	182.19	2.42854
	2013	182.19	2.42854
	Total	473.07	6.305886
Total GHG removal by completion of action in 2018	8.683353 Gg of CO_2 eq.		
Methodology	IPCC GPG for LULUCF 2003		
Assumptions	Assuming that 1) the seedlings were successfully planted and maintained, 2) each ha of planted land comprised 700 seedlings, and 3) the cumulative plantations consisted of a total area of 473.07 ha by 2013 distributed as 76,087 seedlings (i.e., 108.69) in 2011, a total of 127,536 seedlings (i.e., 182.19) in 2012, and a total of 127,536 seedlings (i.e., 182.19 ha) in 2013.		

Annex VIII: Gaps and constraints

In order to fulfill Lebanon's obligations to the UNFCCC in submitting national GHG inventories in line with the IPCC guidelines, further support is needed to continue to develop and consolidate existing technical and institutional capacities.

Many challenges still exist since the preparation of the country's first GHG inventory in 1994 and they are mainly related to unavailability, inaccessibility and inconsistency of activity data and emission factors.

Below is a series of tables presenting the gaps and constraints that were encountered during data collection for the preparation of the inventory of each sector and the proposed measures to address these constraints in the future.

Gaps and constraints	Proposed measures for improvement
Underdeveloped data collection for the	- Create a national institutional arrangement for
inventory	the preparation of the GHG inventory,
 Lack of institutional arrangement for data 	empowering the CAS, the relevant ministries
monitoring and reporting	and concerned public authorities to develop
 Absence of an energy balance 	monitoring indicators (such as the mobility
 Absence of disaggregation of fuel use per 	monitoring indicator), in charge of collection,
subcategory	measuring, reporting and verifying of energy
 Missing of activity data on some fuel used 	activity data.
 Need to improve the uncertainty calculation 	- Establish a mobility monitoring indicator
methodologies in the QA/QC procedure	platform that should include all activity data
	needed to estimate Lebanon's energy sector
Unavailable and/or unshared specific data for	GHG emissions using tiers 2 and 3 of the IPCC
tiers 2 and 3 calculations	guidelines.
 Missing road transport activity data on annual 	- Activity data should be reported with
fuel consumption per type of fuel and yearly	uncertainty assessments in order to have
average vehicle mileage per category	statistically acceptable data.
- Activity data of off-road vehicles not considered	- Standardize/centralize data reporting and
- Unshared activity data between public/private	develop protocols for data accessibility.
institutions due to lack of coordination and/or	
confidentiality	
Use of IPCC default emissions factors since there	- Develop Lebanon's fuel-specific emission
are no fuel-specific emission factors elaborated	factors and methodologies.
for Lebanon.	- Conduct measurement campaigns in order to
	elaborate specific emission factors
	representative of the Lebanese used fuel and
	transportation fleet.
	- Develop GHG emissions estimation models
	with local research institutes to create
	Lebanon-specific methodologies using
	advanced bottom-up approaches for inventory
	preparation.

Table A3-1 Gaps and needs identified in the calculation of GHG emissions from the energy sector

Gaps and constraints	Proposed measures for improvement
Activity data organization	For current inventory:
 Scattered data on fish, meat, 	- Collection of numbers and figures from various sources and
chicken, lime, soda ash, asphalt,	research on detailed description of categories considered in
wine (customs, factories,	each number. Most comprehensive data were adopted for
ministries).	the inventory.
- Lack of uniformity in data between	- Validation of available data through expert judgment.
different official sources (i.e. meat	 Detailed archiving on sources of data.
and poultry production).	
 Lack of sufficient documentation 	Suggestions for future inventories:
on data sources in both the	 Centralization of data compilation management:
Second National Communication	cooperation initiated with Ministry of Industry in order to
(SNC) and Initial National	update industrial database and launch systematic data
Communication (INC).	collection process from industries.
Activity data availability	For current inventory:
 Lack of data on bread, cakes and 	- Wheat production is used to estimate production of bread,
biscuits, and coffee beans.	cakes and biscuits (based on ratios given by bakeries).
- Lack of data on halocarbons (HFCs	- Emissions from HFCs and coffee beans were not estimated.
and PFCs).	Higher tiers for categories other than cement were not used.
- Lack of data for refining inventory	
to higher tier levels (except for	
cement).	
Activity data accessibility	Suggestions for future inventories:
- Lack of institutional arrangements	- Establish protocols and effective networking with data
for data sharing.	providers (Memorandums of Understanding already signed
- Time delays in accessing and	with various institutions, including the Ministry of Industry).
compiling data.	
Activity data compilation	For current inventory:
Emissions from poultry, meat, fish,	- Consider import and export in final activity data
bread and cakes and biscuits were	compilation for cakes and biscuits and bread.
calculated using only national	- Imported poultry and meat was not added to national
production. Emissions from	production since important discrepancies were noted in
processing of imported poultry,	national production figures of SNC and TNC. Adding import
meat fish and wheat were not	numbers would increase this discrepancy. It is noteworthy
Included (as well as subtraction of	that since NWVOUS emitted from the food sector are not
exported production).	included in GHG trend analysis, this discrepancy is not
	projected to the final figures of the inventory.
National circumstances	For current inventory:
- Lack of sufficient, updated and	- Reliance on personal communications with practitioners
inductrial costor in Lohanon	and ministry employees.
Lack of academics and recoarchers	Suggestions for future inventories:
in the industrial field	Suggestions for future inventories:
	industries from each category in order to conture the
	general situation of the inductrial sector in Lehanon
	general situation of the muustrial sector in Lebanon.

Table A3- 2 Gaps and needs identified in the calculation of GHG emissions from industrial processes

Gaps and constraints	Proposed measures for improvement
Activity data organization	- Centralize data management.
 Scattering of data throughout 	- Homogenize statistics between public, private, and
agencies	international agencies.
 Lack of uniformity in data between 	- Establish an advisory scientific team to facilitate data
different official resources	coordination and ensure data uniformity.
Activity data availability	- Undertake field surveys to improve data depths.
 Lack of data on fertilizer 	- Establish a monitoring for manure management and
consumption, MMS, and utilization of	crop residue utilization.
crop residues in different regions	- Undertake research to refine data for higher tier
- Lack of data for refining inventory to	levels.
higher tier levels	
Activity data accessibility	- Establish protocols and effective networking with data
- Lack of institutional arrangements for	providers.
data sharing.	 Involve industry and monitoring institutions.
 Time delays in accessing and 	
compiling data.	
Data on emission factors	- Undertake research to conduct measurements to
- Inadequate data for country specific	develop local emission factors.
emission factors	
Absence of technical and institutional	- Conduct training for relevant institutions involved in
capacity	planning, preparation, and analysis of GHG inventory.
	 Conduct workshop on data management for
	agriculture.
	- Conduct training on new inventory and mitigation
	softwares.

Table A3- 3 Gaps and needs identified in the calculation of GHG emissions from agriculture

Table A3- 4 Gaps and needs identified in the calculation of GHG emissions from land use, land use change and forestry

Gaps and constraints	Proposed measures for improvement
- Lack of information and records of data	- Develop growth models for different forest
changes in forestry and other woody biomass	types.
stocks at the institutional level	- Update forest map to a scale of 1/20,000
 Lack of comprehensive studies of forests 	showing distribution per forest type.
- Lack of studies on annual growth rate for fruit	- Acquire equipment including installation of
trees	gauging stations, monitoring stations, and
 Lack of data related to urban trees 	maintenance of the existing ones.
 Lack of data on illegal forest and grassland 	 Disseminate of data including building
conversion to cropland	database, standardization of reporting
 Lack of quantitative data on the abandoned 	procedures, cooperation between public
terraced lands, and systematic monitoring for	and private sectors, and the use of monthly
ecological indicators	bulletins.
 Lack of technology and monitoring equipment 	 Centralize data management.
 Lack of proper data dissemination 	- Organize or standardize inventory systems.
 Inconsistency of information for terrestrial 	 Modernize and reorganize the climate
observations	monitoring services.
 Discontinuity in data since they are based on 	- Build capacity in climate modeling and data
ecological observations that are specific to	handling.
projects (limited in time and objectives)	- Improve access to data and information.
- Absence of national monitoring system	- Develop systematic observation systems.

- Lack of sufficient funding for research	- Identify key indicators and vulnerable areas.
- Lack of consistency in data collection	 Establish monitoring system for snow.
- Deficiencies in technical expertise and	- Establish a specialized scientific coordination
cooperation between different research	body.
bodies	- Enhance terrestrial and ecological
- Overlapping mandates of different agencies	systematic monitoring.
 Lack of data management systems 	
- Lack of specific emission factors of greenhouse	
gases	

Table A3- 5 Gaps and needs identified in the calculation of GHG emissions from the waste sector

Gaps and constraints	Proposed measures for improvement
 Inconsistency of data related to population number Absence of field surveys for the quantification of waste generation Inconsistency of data on methane recovery Industrial wastewater is not clearly addressed and related information is missing. Inaccuracy of emission factors to reflect national circumstance due to the absence of country-specific emission factors Absence of data related to wastewater handling and treatment 	 Undertake official census on population in Lebanon. Assign an official institution responsible for disseminating information on population characteristics. Undertake research on detailed waste characterization and generation. Institutionalize the reporting of methane recovery rates from solid waste dumpsites. Undertake research to determine national emission factors for solid waste and wastewater. Undertake survey on the quantification and characterization of wastewater handling and treatment systems