

Formation Pratique du GCE sur les Inventaires de Gaz à Effet de Serre

Exercices

Procédés Industriels

Pour les exercices ci-dessous, utiliser la Base de Données du GIEC sur les Facteurs d'Emissions afin d'identifier les facteurs d'émissions appropriés

Production de ciment

Vous n'avez pas été en mesure de trouver, dans votre pays, des informations sur la quantité de ciment produite chaque année. Sur le site web de la Division des Statistiques des Nations Unies (http://unstats.un.org/unsd/databases.htm), vous trouverez cependant les informations suivantes dans la catégorie « Ciment, excepté sous la forme de clinkers ». Utilisez ces informations (en supposant que l'on produise à la fois le type de ciment composé et le type de ciment Portland) pour estimer les émissions de CO₂ provenant de la production de ciment pour les années 1990, 2000 et 2005, en utilisant la méthodologie au plus haut niveau possible.

Année	Quantité (kt)
2005	Pas de données
2004	4 494,00
2003	4 632,00
2002	4 584,00
2001	4 700,00
2000	5 703,00
1999	6 354,00
1998	6 476,00
1997	5 916,00
1996	6 723,00
1995	Pas de données
1994	6 204,00
1993	Pas de données
1992	6 500,00
1991	6 585,00
1990	Pas de données

Six mois après que vous ayez réalisé les calculs, une étude montre finalement que la production de ciment dans votre pays a varié au fil des années, ainsi que le tableau ci-dessous le montre. Quelle est la différence, s'il y en a une, que cette information entraı̂nerait dans vos estimations des émissions de CO_2 pour les années 1990, 2000 et 2005 ?

	1990	2000	2005
Production mixte	60/40	70/30	85/15
(Portland/composé)			-
Pourcentage d'additifs	40%	20%	20%
dans le ciment composé			

Production de chaux

Les données sur la production annuelle de chaux (en kt), pour les années 1990–2000, sont présentées dans le tableau ci-dessous.

- a. Estimer les émissions de CO₂ pour toutes les années.
- b. Si, au cours de l'année 2000, 35% de votre production de chaux dolomitique ont été éteints et convertis en chaux hydratée, comment ceci influerait-il sur les émissions de CO_2 pour cette année ?

Année	Chaux à Haute	Chaux
	Teneur en	Dolomitique
	Calcium	
1990	11 166	2 234
2000	14 300	3 000
2005	14 100	2 990
2006	15 000	2 950
2007	14 700	2 700
2008	14 900	2 310
2009	15 800	1 830

Production d'aluminium

Les données sur la production annuelle d'aluminium (en kt), pour les années 1990–2000, sont présentées dans le tableau ci-dessous. Pour les années 1990–1997, le procédé de production prédominant a été le procédé à Anodes Précuites à Piquage Central (CWPB) alors que, depuis 1998, une large majorité des usines de production est passée au processus Soderberg à Goujons Verticaux. En utilisant les données du tableau ci-dessous et les FE (Facteurs d'Emissions) correspondants, estimez les émissions de PFC (CF4 et C_2F_6) provenant de la production d'aluminium de votre pays, pour les années 1990, 1995 et 2000.

Année	Production
	d'aluminium
1990	56 316,00
1991	54 472,00
1993	53 949,00
1994	54 560,00
1995	Pas de données
1996	51 046,00
1997	46 444,00
1998	44 483,00
1999	42 990,00
2000	Pas de données

Production d'acide adipique

En utilisant les données sur la production d'acide adipique du tableau ci-dessous, et en choisissant un FE approprié, estimez les émissions de N_2O qui en résultent pour la période complète (1990–2005). Envisagez trois scénarii pour la technologie de réduction :

- 1) Pas de mesure de réduction,
- 2) Destruction catalytique, et
- 3) Destruction thermique.

Année	Production
	d'acide adipique
	(kt)
2005	Pas de données
2004	294,00
2003	320,00
2002	305,00
2001	298,00
2000	Pas de données
1999	250,00
1998	245,00
1997	237,00
1996	180,00
1995	Pas de données
1994	166,00
1993	Pas de données
1992	123,00
1991	99,00
1990	Pas de données

Production d'acide nitrique

En utilisant les données sur la production d'acide nitrique du tableau ci-dessous, et en choisissant un FE approprié, estimez les émissions de N_2O qui en résultent pour les années de 2000 à 2009. En choisissant vos FE, envisagez les scénarii suivants pour le procédé de production :

- 1) 100% des anciennes usines (avant 1975) n'ont pas d'équipement de réduction catalytique non sélective (NSCR en anglais);
- 2) 27% des anciennes usines (avant 1975) ; 62% des usines utilisant un NSCR ; 11% : pas d'informations.

Année	Production d'acide nitrique (Gg)
2000	7 900
2005	
2006	
2007	7 827
2008	6 686
2009	5 924