	Value	
Spatial scale of results	Season to decades	
Time to conduct analysis	Site	
Data needs	4 to 5	
Skill or training required	1	
Technological resources	4 to 5	
Financial resources	4 to 5	
Range for ranking: 1 (least amount) to 5 (most demanding).		

Examples: growth chambers, experimental fields.

Analogues: Drought, Floods

Africa vegetation health (VT - index) Vegetation health: **Red – stressed**, **Green – fair**, **Blue – favourable**

(Source: NOAA/NESDIS)

Analogues: Drought

Analogues (space and time)

Example: existing climate in another area or in previous time

	Value	
Spatial scale of results	Decades	
Time to conduct analysis	Site to region	
Data needs	1 to 2	
Skill or training required	1 to 3	
Technological resources	1 to 3	
Financial resources	1 to 2	
Range for ranking: 1 (least amount) to 5 (most demanding).		

(Source: Iglesias et al., 1999)

Production Functions

Example: derived with empirical data.

	Value	
Spatial scale of results	Season to decades	
Time to conduct analysis	Site to globe	
Data needs	2 to 4	
Skill or training required	3 to 5	
Technological resources	3 to 5	
Financial resources	2 to 4	
Range for ranking: 1 (least amount) to 5 (most demanding).		

Agroclimatic Indices

Length of the growing periods (reference climate, 1961–1990).

(IIASA-FAO, AEZ)

Agroclimatic Indices

	Value	
Spatial scale of results	Season to decades	
Time to conduct analysis	Site to globe	
Data needs	1 to 3	
Skill or training required	2 to 3	
Technological resources	2 to 3	
Financial resources	1 to 3	
Range for ranking: 1 (least amount) to 5 (most demanding).		

Example: FAO, etc.

Crop Models

Based on

Understanding of plants, soil, weather, management

Calculate

Growth, yield, fertilizer & water requirements, etc

Require

Information (inputs): weather, management, etc

Models – Advantages

- Models are assisting tools; -stakeholder interaction is essential
- Models allow us to ask "what if" questions, the relative benefit of alternative management can be highlighted:
 - a) Improve planning and decision-making
 - b) Assist in applying lessons learned to policy issues
- Models permit integration across scales, sectors and users.

Models – Limitations

- Models need to be calibrated and validated to represent reality
- Models need data and technical expertise
- Models alone do not provide an answer; stakeholder interaction is essential.

	Value	
Spatial scale of results	Daily to centuries	
Time to conduct analysis	Site to region	
Data needs	4 to 5	
Skill or training required	5	
Technological resources	4 to 5	
Financial resources	4 to 5	
Range for ranking: 1 (least amount) to 5 (most demanding).		

Examples: CROPWAT, CERES, SOYGRO, APSIM, WOFOST, etc.

Economic Models

- Consider both producers and consumers of agricultural goods (supply and demand)
- Economic measures of interest include:
 - a) How do prices respond to production amounts?
 - b) How is income maximized with different production and consumption opportunities?

Economic Models (continued)

- Microeconomic: Farm
- Macroeconomic: Regional economies
- All: Crop yield is a primary input (demand is the other primary input)
- Economic models should be built bottom-up.

	Small holder farmer	Commercial farmer
Strategy of production	Stabilize food production	Maximize income
Risk	Malnutrition and migration	Debt and cessation of activity
Source of risk	Weather	Weather, markets and policies
Non-structural risk - avoidance mechanisms	Virtually nonexistent	Insurance, credit, legislation
Inputs and farm assets	Very low	Very significant
Price of food crops	Local for primary crops and partially global for industrial crops, with some interference by governments	Global with some interference of policies

Agricultural Trade Models

(Source: Parry et al., 1999)

Social Sciences Tools

Surveys and interviews

Allow the direct input of stakeholders (demand-driven science), provide expert judgement in a rigorous way.

Surveys and Interviews

 Development of adaptation options with stakeholders.

Surveys of Stakeholders: Example - Designing Adaptation Options

Stakeholder group (including women)	Adaptation Level 1	Adaptation Level 2	Adaptation Level 3
Small-holder farmers or farmers' groups	Tactical advice on changes in crop calendar and water needs	Management of risk in water availability (quantity and frequency)	Education on water-saving practices and changes in crop choices
Commercial farmers	Tactical advice on improving cash return for water and land units	Investment in irrigation technology; risk- sharing (e.g. insurance)	Private sector participation in development of agro-businesses
Resource Managers	Education on alternatives for land and water management	Integrated resource management for water and land	Alternatives for the use of natural resources and infrastructure

Economic and Social Tools

Examples: Farm, econometric, I/O, national economies, BLS, ...

	Value	
Spatial scale of results	Yearly to centuries	
Time to conduct analysis	Site to region	
Data needs	4 to 5	
Skill or training required	5	
Technological resources	4 to 5	
Financial resources	4 to 5	
Range for ranking: 1 (least amount) to 5 (most demanding).		

Integrators: Geographic Information Systems (GIS)

Integrators: GIS

Example: All possible applications

	Value	
Spatial scale of results	Monthly to centuries	
Time to conduct analysis	Region	
Data needs	5	
Skill or training required	5	
chnological resources 5		
Financial resources	esources 5	
Range for ranking: 1 (least amount) to 5 (most demanding).		

Conclusions

- The merits of each approach vary according to the level of impact being studied, and they may frequently be mutually supportive
- For example, simple agroclimatic indices often provide the necessary information on how crops respond to varying rainfall and temperature in wide geographical areas; crop-specific models are used to test alternative management that can in turn be used as a component for an economic model that analyses regional vulnerability or national adaptation strategies
- Therefore, a mix of approaches is often the most rewarding,

- Data are required data to define climatic, nonclimatic environmental, and socioe-conomic baselines and scenarios
- Data are limited
- Discussion on supporting databases and data sources

IPCC Working Group 1: "A Collective Picture of a Warming World"

(Source of data: GISS/NASA)

Climate

FAOCLIM

Annual Precipitation1901-1995

(Source: NOAA, NCDC)

Global Land Cover Classification

(Souce: De Fries et al., 1998)

Population

Soils: FAO

FAO and the World Bank

USGS, FEWS, USAID

•FEWS NET in cooperation with USGS and US AID

- Botswana village flood watch
- Carbon sequestration
- Environmental monitoring and information system
- Land cover performance
- Madagascar conservation
- Rift Valley fever
- Sahel land use
- Sustainable tree crops

Projected Change in Annual Temperature and Precipitation for the 2050s

The projected change in annual temperature and precipitation for the 2050s compared to the present day, for two genaral circulation models (GCMs)GCMs, when the climate models are driven with an increase in greenhouse gas concentrations defined by the IPCC "business-as-usual" scenario.

Practical Applications: Policy Questions

- What components of the farming system are particularly vulnerable and may thus require special attention?
- Can the water/irrigation systems meet the stress of changes in water supply/demand?
- Will climate significantly affect domestic agriculture?
- How can land use and land tenure aspects concerning poor people be taken into consideration?

Question: What components of the farming system are particularly vulnerable, and may thus require crop models such as the Decision Support System for Agrotechnology Transfer (DSSAT)?

Decision Support System for Agrotechnology Transfer

International Consortium for Agricultural Systems Applications

http://www.icasanet.org/

http://www.clac.edu.eg

Practical Applications: DSSAT

- 1. Overview and previous examples of previous use
- 2. Guided use of the model

Components	Description
Databases	Weather, soil, genetics, pests, experiments, economics
Models	Crop models (maize, wheat, rice, barley, sorghum, millet, soybean, peanut, dry bean, potato, cassava, etc.)
Supporting software	Graphics, weather, pests, soil, genetics, experiments, economics
Applications	Validation, sensitivity analysis, seasonal strategy, crop rotations

- Weather: Daily precipitation, maximum and minimum temperatures, solar radiation
- Soil: Soil texture and soil water measurements
- Management: planting date, variety, row spacing, irrigation and nitrogen (N) fertilizer amounts and dates, if any
- Crop data: dates of anthesis and maturity, biomass and yield, measurements on growth and Leaf Area Index (LAI).

Simulated Wheat Yield with the 1961-90 Climate

(Source: Iglesias et al., 1999)

- Can optimal management be an adaptation option for maize production in Zimbabwe?
- Can adaptation be achieved by optimizing crop varieties?
- Does the start of the rainy season affect maize yield in Kasungu, Central Malawi?

Can Optimal Management be an Adaptation Option for Maize Production in Zimbabwe?

(Source: Muchena, 1994)

Impacts: Zimbabwe

Impacts of climate change: CERES-Maize model

(Source: Muchena, 1994)

Adaptation: Zimbabwe

Adaptation strategies in Gueru: CERES-Maize model

- Increased inputs and improve management:
 - a) Fertilizer
 - b) Fertilizer and irrigation.

Can Adaptation be Achieved by Optimizing Crop Varieties?

- Juvenile phase (growing degree days base 8°C from emergence to end of the juvenile phase)
- Photoperiod sensitivity
- Grain filling duration (growing degree days base 8 from silking to physiological maturity)
- Potential kernel number
- Potential kernel weight (growth rate).

Does the Start of the Rainy Season Affect Maize Yield in Kasungu, Central Malawi?

Practical Applications: Worked Examples

- 1. Effect of management (nitrogen and irrigation) in wet and dry sites (Florida, USA, and Syria)
- 2. Effect of climate change on wet and dry sites:
 - a) Sensitivity analysis to changes in temperature and precipitation (thresholds) and CO₂ levels
- 3. Adaptation: changes in management to improve yield under climate change

Application 1. Management

• Objective: Getting started

Weather

	Syria	Florida, USA
SR (MJ m ² day ¹)	19.3	16.5
T Max (°C)	23.0	27.4
T Min (°C)	8.5	14.5
Precipitation (mm)	276.4	1364.3
Rain days (num)	55.7	114.8

Input Files Needed

■ Weather

■ Soils

■ Cultivars

Management files (*.MZX files) description of the experiment.

Open DSSAT

🛋 DSSAT35.EXE				_ 🗆 >
DECI	SION SUPPORT	SYSTEM FOR AGROT	ECHNOLOGY TRAN	ISFER
DATA	MODELS	ANALYSES	TOOLS	SETUP/QUIT
B Background X Experiment G Genotype W Weather S Soil P Pest E Economic				
Institutes, site	s, and researc	chers; fields; a	nd codes for d	lata.
↑↓→← moves t ESC moves t	hrough menu cl o higher menu	noices level		DSSAT v3.5

Examine the Data Files . . .

Location of the Cultivar File . . .

Select the Cultivar File . . .

iener	al file nanagei	S = GENOTYPE COEFFICIENT	Version 1.
	—	Files In Directory: C:\DSSAT35\GENC	DTYPE –
L	FILE NAME	FILE HEADING	
<u>כרררררררר</u>	CHGR0980.SPE CSSIM980.CUL CSSIM980.SPE GØGR0980.CUL GØGR0980.ECO GØGR0980.SPE MLCER980.CUL MLCER980.SPE MZCER980.SPE MZCER980.SPE PNGR0980.CUL PNGR0980.ECO	CHICKPEA SPECIES COEFFICIENTS - CF CASSAUA GENOTYPE COEFFICIENTS - CS CASSAUA SPECIES COEFICIENTS - CS BAHIA GENOTYPE COEFFICIENTS - CRGR BAHIA ECOTYPE COEFFICIENTS - CRGRO BAHIA SPECIES COEFICIENTS - CRGRO MILLET GENOTYPE COEFFICIENTS - GECF MILLET SPECIES COEFFICIENTS - GECF MAIZE GENOTYPE COEFFICIENTS - GECF MAIZE SPECIES COEFFICIENTS - GECF PEANUT GENOTYPE COEFFICIENTS - CRGRO PEANUT ECOTYPE COEFFICIENTS - CRGRO	SSIM980 MODEL M980 MODEL R0980 MODEL 2980 MODEL 280 MODEL CER980 MODEL ER980 MODEL ER980 MODEL R980 MODEL GR0980 MODEL
2 - 3 -	– Institute List – Site Listing	F4 - Search ting F5 - Sort F6 - Print L - Include/Exclude In Sublist	F7 - Colour OFF F8 - Edit F9 - Remake List F10 - Edit Config File

Examine the Cultivar File . . .

Location of the Weather File . . .

💽 DSSAT35.EXE						- 🗆 ×			
Veather File Manager (WFM) Version 1.0									
- Files In All Installed Directories -									
FILENAME	SITE NAME	ZONE	YR	LAT	LONG	ELEV			
AAAA8201.WTH ALCL5601.WTH ALCL5701.WTH ALCL5701.WTH ALCL5901.WTH ALCL5901.WTH ALCL5901.WTH AUCB7001.WTH AUCCB7001.WTH CCPA.CLI CCPA7801.WTH CCPA7801.WTH CCPA8001.WTH CCPA8101.WTH	BREDA, SYRIA CLANTON, AL CLANTON, AL CLANTON, AL CLANTON, AL AUCB CROSSUILLE, ALABAMA, U PALMIRA, VALLE, COLOMB PALMIRA, VALLE, COLOMB PALMIRA, VALLE, COLOMB PALMIRA, VALLE, COLOMB	XXX XXX XXX XXX XXX XXX XXX XXX XXX XX	-9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	35.2 32.5 32.5 32.5 32.5 32.5 32.5 32.5	0.0 -86.4 -86.4 -86.4 -86.4 -86.0 -76.3 -76.3 -76.3 -76.3 -76.3	0 185 185 185 -99 573 965 965 965 965 965			
F1 - Help F2 - Institute F3 - Site Listi Esc - Quit	Listing F5 - So ing F6 - Pi	eint	CATUE	F8 - H F9 - H F10 - V	Colour OFF Edit Remake Lis Vorking Li	:t			
	- File Location: (C:\DSSAT35\W	EATHE	} -					

🖭 DSSAT	T35.EX	E								- 🗆 ×
File	Edit	Searc	:h <mark>∦in</mark> d	lows						
r=[]]=					35\WEAT	HERNA	188820	01.WTH =		[‡]
<u>₩</u> WEATH]	ER : E	reda,	Syria 👘							<u> </u>
C INSI		LAT	LONG	ELEU	TAU	AMP	REFHT	WNDHT		
AAAA		.20	0.00							
CDATE	SRAD	TMAX	TMIN	RAIN						
82001	4.0	5.5	3.0	0.0						
82002	11.1	8.0	0.5	0.0						
82003	6.5	5.0	-0.5	0.0						
82004	3.3	0.4	-0.5	0.0						
82005	11.6	3.0	-4.2	0.0						
82006	3.1	2.0	-3.0	0.0						
82007	8.5	6.5	0.5	0.0						
82008	9.2 12.5	8.2 11.5	1.8	0.0						
82009 82010	14.5	15.0	-6.0	0.0 0.0						
82010	11.3	8.3	-1.5 2.4							
82012	10.5	8.0	3.7	0.0 0.0						
82013	6.0 13.0	11.0	-1.5	0.0						
82014	6.3	5.3	-0.2	0.0						
82015	8.2	10.7	-0.6	2.0						
82016	2.4	9.5	4.6	8.4						
82017	3.4	10.8	5.5	3.2						
	1:1 =		a 🐪							تر
F2 Save		Open	Alt-F3	Close	F5 Zoo	m F6	Next	F10 Men	าน	

Calculate Monthly Means . . .

Calculate Monthly Means . . . (continued)

Program to Generate Weather Data . . .

Location of the Input Experiment File . . .

Select the Experiment File . . .

Experiment File Manager (EFM) Version 1. - Files In Directory: C:\DSSAT35\MAIZE -								
L	FILE NAME	CG	UNV NAME	LCL NAME	EXPERIMENT FACTOR(S)/NAME			
44	AAAA8201.MZX AABB8201.MZX EBPL8501.MZX FLSC8101.MZX IBWA8301.MZX UFGA8201.MZX	ZE ZE MZ MZ MZ	MAI MAI EBPL8501 FLSC8101 I BWA8301 UFGA8201	CERES MA	CLIMATE CHANGE ADAPT EXP FLORI CLIMATE CHANGE ADAPT EXP SYRIA MAIZE RESPONSE TO MUCUNA GREEN N X IRRIG., S.C. N X VAR WAPIO, IBSNAT EXP.1983 NIT X IRR, GAINESVILLE 2N*3I			

Examine the Experiment File (Syria)

DSSAT35.EXE	×
File Edit Search Windows	
=[]]C:\DSSAT35\MAIZE\AABB8201.MZX[*EXP.DETAILS: MAIZE CLIMATE CHANGE ADAPT EXP SYRIA SYRIA	ובני בני
*GENERAL @PEOPLE	
ANA IGLESIAS PADDRESS	
UNIVERSIDAD POLITECNICA DE MADRID OSITE	
VARIOUS	
*TREATMENTSFACTOR LEVELS	
EN R O C TNAME CU FL SA IC MP MI MF MR MC MT ME MH SM	
1 1 0 RAINFED LOW NITROGEN 1 1 1 1 1 0 0 0 0 1 2 1 0 0 RAINFED HIGH NITROGEN 1 1 1 1 1 1 0 0 0 0 1 3 1 0 0 I 1	
2 1 0 0 1 1 1 1 2 0 0 0 1 2 1 0 0 1 1 1 1 1 2 0 0 0 1 3 1 0 0 1 <td></td>	
1 1 0 RAINFED LOW NITROGEN 1 1 1 1 0 0 0 0 1 2 1 0 0 RAINFED HIGH NITROGEN 1 1 1 1 1 1 1 0 0 0 0 1 3 1 0 1	
*CULTIVARS	
PC CR INGENO CNAME 1 MZ IB0035 McCurdy 84aa	
= 1:1 $=$ 1:1	تــــ
F2 Save F3 Open Alt-F3 Close F5 Zoom F6 Next F10 Menu	

Examine the Experiment File (Florida)

DSSAT35.EXE			- 🗆 ×
	indows		
	= C:\D\$\$AT35\MAIZE\	AABB8201.MZX	[‡]
*CULTIVARS @C CR INGENO CNAME			
1 MZ IB0035 McCurdy 84	aa		
*FI ELDS			
	LSA FLOB FLDT F	LDD FLDS FLST SLTX	SLDP ID_SOIL
1 AAAA0002 AAAA -9	9.0 0 DR000	0 0 00000 -99	180 IBMZ91001
eLXCRD			.SLEN .FLWR .SL
1 0.00000	0.00000 0	.00 0.0	0 0.0 0
*INITIAL CONDITIONS			
			ICRIP ICRID
1 MZ 82056 100 @C ICBL SH20 SNH4 S	0 1.00 1.00 -9 NO3	9.0 1000 0.80 0.00	100 15
	0.6		
	0.6		
	0.6 0.6		
	0.6		
1 120 0.076 0.5	0.6		
	0.6		<u>. y</u>
	3 Close F5 Zoom	F6 Next F10 Menu	

The Experiment File Can Also Be Using a Text Editor (Notepad)

ile Edit Search Help	
EXP.DETAILS: PIOTM201SN NEV PIO CULTIVAR TEST	-
GENERAL	
PEOPLE	
A. IGLESIAS AND C. ROSENZWEIG	
ADDRESS	
NASA/GISS, USA SITE	
DES MOINES, IOWA	
NOTES	
NEW PIONNER PROJECT	
TREATMENTSFACTOR LEVELS	
N R O C TNAME	
1 1 0 0 DIAO BASE MZ PL1 16 1 0 1 1 0 1 1 0 0 1 0 1	
2100DIA1HC10M2PL1 16201101100201	
3 1 0 0 DIA2 HC20 MZ PL1 16 3 0 1 1 0 1 1 0 0 3 0 1	
4100DIA3HC50M2PL1 16401101100401 5100DIA4CC10M2PL1 165011010100201	
5 1 0 0 DIA4 CC10 MZ PL1 16 5 0 1 1 0 1 1 0 0 2 0 1 6 1 0 0 DIA5 CC20 MZ PL1 16 6 0 1 1 0 1 1 0 0 3 0 1	
CULTIVARS	
C CR INGENO CHAME	
1 HZ IB0070 PI03394 2 HZ IB0012 PI03382	
E HE IDOOTE I IDOOTE	
FIELDS	
L ID_FIELD WSTA FLSA FLOB FLDT FLDD FLDS FLST SLTX SLDP ID_SOIL	
1 DIA00001 DIA05101 -99 0 DR000 0 0 00000 -99 90 IBPI000990	
2 DIA10001 DIA15101 -99 0 DR000 0 0 00000 -99 90 IBPI000990 3 DIA20001 DIA25101 -99 0 DR000 0 0 000000 -99 90 IBPI000990	
3 DIR20001 DIR22101 - 77 0 DR000 0 0 0 00000 - 77 70 1011000770	
INITIAL CONDITIONS	
C PCR ICDAT ICRT ICRD ICRN ICRE	
1 M2 51120 1200 -99 1.00 1.00	
C ICBL SH2O SNH4 SNO3 1 5 0.262 0.5 4.6	
1 5 8.262 8.5 4.6 1 15 8.262 8.5 4.6	
1 30 0.262 0.5 4.4	
1 45 0.262 0.2 3.8	
1 60 8.262 8.2 3.8	
1 98 8.261 8.2 2.8	

LU4;UH+	moves through menu choices	DSSAT v3.5
	GENERIC CERES 3.5 (98.0)	
	J.T. Ritchie, U. Singh, D.C. Godwin, W.T. Bowen, P.W. Wilkens, B. Baer, G. Hoogenboom and L.A. Hunt	
	International Fertilizer Development Center, Michigan State University & University of Georgia	
	CERES simulates crop growth and development, soil water dynamics, and soil nitrogen dynamics in response to weather, soil characteristics, cultivar characteristics and crop management. This version simulates barley, maize, millet, sorghum, and wheat crops. It uses the ICASA standard data formats and files for DSSAT Version 3.5. 15-November-1998	

Select Experiment . . .

Select Treatment . . .

DSSAT35.EXE						- 🗆 ×
CROP EXPERIMENTAL CASE STUDIES			D	ID		NO
1. MZ CLIMATE CHANGE ADAPT EXP FLORIDA 2. MZ CLIMATE CHANGE ADAPT EXP SYRIA			IA IA		982 982	01 01
EXPERIMENT SELECTED ===> 1 NEW SELECTION ?> 1 ←[2]	INST.		YEAR			
CLIMATE CHANGE ADAPT EXP FLORIDA	ID AA	ID AA	1982	NO Ø1	N0	-
2. RAINFED HIGH NITROGEN	AA	AA .	1982	01	23	
3. IRRIGATED LOW NITROGEN 4. IRRIGATED HIGH NITROGEN	AA AA	AA AA	1982 1982	01 01	3	
5. RUN ALL TREATMENTS	ÂÂ	ÂÂ	1982	01	-	
TREATMENT SELECTED ===> 1 NEW SELECTION ?> 5						

View the Results . . .

Select Option . . .

Retrieve Output Files for Analysis

■ C:/DSSAT35/MAIZE/SUMMARY.OUT

■ C:/DSSAT35/MAIZE/WATER.OUT

■ C:/DSSAT35/MAIZE/OVERVIEW.OUT

■ C:/DSSAT35/MAIZE/GROWTH.OUT

■ C:/DSSAT35/MAIZE/NITROGEN.OUT

■ These are DOS text files, can be imported into

Application 2. Sensitivity to Climate

• Objective: Effect of weather modification

Start Simulation . . .

Sensitivity Analysis . . .

DSSAT35.EXE		<u> </u>
MANAGEMENT / SENSITIVITY A	NALYSIS OPTIONS	
Ø. RETURN TO THE MAIN MENU		
1. Simulation Timing 2. Crop 3. Cultivar 4. Weather 5. Soil	FEB 25 1982 MAIZE McCurdy 84aa UFGA IBMZ910014	MZCER980.SPE MZCER980.CUL MAT : 0 OBSERVED WMOD:N -99
 6. Initial Conditions 7. Planting 8. Harvest 9. Water and Irrigation 10. Nitrogen 	AS REPORTED FEB 26 1982 AT HARVEST MATURITY ON REPORTED DATE(S) ON REPORTED DATE(S)	ROW SP: 61. PLANTS/m2: 7.20 NO N-FIX SIMUL.
 Phosphorus Residue Pests and Diseases Field 		RACTION NOT SIMULATED
15. Crop Process Options 16. Output Control SELECTION ? [Default = 0]	FREQ: 3 OUU:Y SUM:Y	PEST:N PHOTO:C WTH:M ET:R GROWTH:Y H20:Y NIT:Y PEST:N

Application 3. Adaptation

• Objective: For advanced participants ...

(Using Irrigation Models (e.g. CROPWAT)

Water Resources, Development and Management Service CROPWAT

CROPWAT is a decision support system for irrigation planning and management.

<http://www.clac.edu.eg>

<http://www.fao.org/ag/agl/aglw/cropwat.htm>

Can the water/irrigation systems meet the stress of changes in water supply/demand?

Worked Examples

- 1. Calculate ETo
- 2. Calculate crop water requirements
- 3. Calculate irrigation requirements for several crops in a farm

Start CROPWAT ...

Retrieve Climate File . . .

Retrieving Climatic Data		? ×
File <u>n</u> ame: KURNOOL.PEM	Eolders: c:\cropwatw\climate @ c:\ @ CROPWATW @ climate	OK Cancel Network
List files of <u>type</u> : Climate Files (*.PEM)	Dri <u>v</u> es: I≡I c:	•

Examine Temperature . . .

Examine ET0 . . .

Calculate ET0 . . .

🚣 CropWat 4 Windows	- 🗆 ×
<u>Fi</u> le Input <u>D</u> ata <u>S</u> chedule <u>T</u> ables <u>G</u> raphs Save <u>R</u> eport <u>O</u> ptions <u>W</u> indow <u>H</u> elp	
I (1 2 3 1 1 1 1 1 1 1 1 1 1	
Calculation Methods	
ETo Rainfall Effective Rain Scheduling	
ETo EquationAngstrom's CoefficientsImage: Penman-Monteitha = 0.25b = 0.50Defaults	
ETo Distribution Model Fit a Curve to Monthly Averages Fit a Parabola to Three-Month Averages Linear Distribution at the Ends of the Months Take Monthly Averages as Daily Values	
<u>Save</u> <u>DK</u> <u>Cancel</u>	

Examine Rainfall . . .

View Progress of Inputs . . .

📕 🔽 📫 🔍 👻	◙◙∟॥⊭≞॥॥≥₽≞) E ×	
Data Item	File Name	CWR	Sche 🔺	
Climate	C:\CROPWATW\CLIMATE\KURNOOL.PEM	Optional	Opti	
ETo	C:\CROPWATW\CLIMATE\KURNOOL.PEM	Yes	Y	
Rainfall	C:\CROPWATW\CLIMATE\KURNOOL.CRM	Optional	Opti	
Сгор	C:\CROPWATW\CROPS\MAIZE.CRO	Optional	Opti	
Cropping Pattern	[No Data]	Yes	Y	
	[No Data]	No	Y	
Soil	[NO Data]			
Soil Scheduling Criteria	[Set]	No	Y	
		No No	Y N V	
Scheduling Criteria Can Calculate Now? ∢		No		

Define Irrigation Method . . .

🚣 CropWat 4 Windows	- 🗆 🗙
<u>F</u> ile Input <u>D</u> ata <u>S</u> chedule <u>T</u> ables <u>G</u> raphs Save <u>R</u> eport <u>O</u> ptions <u>W</u> indow <u>H</u> elp	
▛▋▋≦▓●▇▓▐▙▋▓▛▓▙▌▝▖▋	
	-
Calculation Methods	
ETo Rainfall Effective Rain Scheduling	
Scheduling Criteria Application Timing	
Irrigate When a Specified % of Readily Soil Moisture Depletion Occurs	
100 (%)	
Application Depths	
Refill to a Specified % of Readily Available Soil Moisture	
Start of Scheduling	
First Planting Date of Each Crop	
Day: Month:	
<u>Save</u> <u>O</u> K <u>Cancel</u>	
	<u> </u>

Input Data Completed . . .

	ੋਡੋ ੈ <u> ⊱</u> ੈ <u> ≥</u> ੈ				
🏴 Data Status					
Data Item	File Name	CWR	Sche 🔺		
Climate	C:\CROPWATW\CLIMATE\KURNOOL.PEM	Optional	Opti		
ETo	C:\CROPWATW\CLIMATE\KURNOOL.PEM	Yes	Y		
Rainfall	C:\CROPWATW\CLIMATE\KURNOOL.CRM	Optional	Opti		
Crop	C:\CROPWATW\CROPS\CABBAGE.CRO	Optional	Opti		
Cropping Pattern	C:\CROPWATW\CROPS\ANA.CPT	Yes	Y		
Soil	C:\CROPWATW\SOILS\MEDIUM.SOI	No	Y		
Scheduling Criteria	[Set]	No	Y		
Can Calculate Now?		Yes	Y -		
•					
Requirements:					

Calculate Irrigation Demand . . .

Calculate Irrigation Schedule . . .

) <u>e</u> g						_		
	🗟 🥌 🗾 🥵	📥 🔝 🎽	· 🛋 🛄	🎘 🛃 🎽	+ <u>∞</u> (°a ⊲))			
n Wate	er Requirement	te Tablo						
p wate	er Kequitement	is fable						
MAIZE	(Grain)	▼ Time	Step (Days	i): 10	Upda	ite Repo	t	
				·				
(All Blo	cks]	👻 Irriga	tion Efficie	ncy (%): 70		<u>C</u> lose		
	ETo	Crop Area	Crop Kc	CWR (ETm)	Total Rain	Effect. Rain	Irrig. Reg.	FWS
Date	(mm/period)	(%)		(mm/period)	(mm/period)	(mm/period)	(mm/period)	(1/s/ha) 1
15/3	64.05	50.00	0.15	9.61	0.00	0.00	9.61	0.16
25/3	66.51	50.00	0.15	9.98	1.58	1.55	8.42	0.14
4/4	68.58	50.00	0.17	11.45	2.18	2.18	9.27	0.15
14/4	70.21	50.00	0.27	18.84	3.42	3.36	15.48	0.26
24/4	71.39	50.00	0.38	27.18	5.12	4.90	22.28	0.37
4/5	72.09	50.00	0.49	35.55	7.05	6.57	28.98	0.48
14/5	72.32	50.00	0.59	42.58	9.07	8.24	34.34	0.57
24/5	72.07	50.00	0.60	43.24	11.09	9.83	33.41	0.55
3/6	71.37	50.00	0.60	42.82	13.06	11.30	31.52	0.52
13/6	70.24	50.00	0.60	42.14	14.95	12.66	29.49	0.49
23/6	68.71	50.00	0.58	40.03	16.75	13.88	26.15	0.43
3/7	66.82	50.00	0.48	31.93	18.42	14.99	16.93	0.28
13/7	64.63	50.00	0.36	23.34	19.93	15.98	7.37	0.12
•								Þ

Will climate significantly affect domestic agriculture? – model integration; GIS integration

Integration of Agriculture and Other Sectors

- The following discussion on how to integrate the V&A methods and tools into comprehensive assessments relevant to policy used these examples:
 - a) Agriculture land use, water use (Egypt)
 - b) Agriculture socio-economic issues (Mediterranean)
 - c) Agriculture water (Global)

Aim:

Analysis of no regret options for the future

Current vulnerability:

- Dependence on the Nile as the primary water source
- Large traditional agricultural base
- Long coastline already undergoing both intensifying development and erosion
- Problems derived from population increase
- Agriculture entirely based on irrigation (water from the Nile, and to lesser degree from groundwater)
- Soil conditions and water quality deteriorating

(Source: Strzepek et al., 1999)

Integrated Assessment in Egypt

Methods:

- a) Scenario development
- b) Vulnerability evaluation using
 agronomic, economic, and water
 allocation models
- Results: Future vulnerability:

- a) Significant decreases in crop yield
 - and agronomic water use efficiency

2002	Egypt	Morocco	Spain	Tunisia
Area (1000ha)	100,145	44,655	50,599	16,361
Population (1000)	70,507	· .	40,977	9,728
Population 2030 (1000)	109,111	42,505	39,951	12,351
Population in agriculture (% of total)	35	35	7	24
Population in rural areas (% of total)	57	43	22	33
Population in rural areas 2030				
(% of total)	46	29	15	22
Agricultural Area (% of total)	3	69	58	55
Irrigation area (% of agricultural)	100	4	12	4
Wheat Yield (kg/ha) (World = 2,678)	6,150	1,716	2,836	3,853
Agricultural Imports (million \$)	3,688	1,740	12,953	1,022
Agricultural Exports (million\$)	774	811	16,452	391
Fertiliser Consumption (kg/ha)	392	12	74	12
Crop Drought Insurance	No	No	Yes	No
Agricultural Subsidies	Low	Low	High	Low
Agriculture, value added (% of GDP)	17	14	4	12
GDP Per capita (US\$) UN derived				
from purchasing power parity (PPP)	4,000	3,900	21,200	6,800

(Source: Data: FAOSTAT)

On-farm adaptation: Use of alternative existing varieties and optimization of the timing of planting may improve yield levels or water use (no cost). In Egypt this is a very limited option.

Essential changes in resource management (crops, water and land) would lead not only to adaptation to climate change but also to the overall improvement of the agricultural systems (no regret

options).

Evolicit auidance to farmers regarding optimal crop

Socioeconomic Issues

- Policy, stakeholders
- Technology.

Understanding the Stakeholder Linkages and Decision Process

Policy Decisions

 Adaptation is, in part, a political process, and information on options reflects different views about the long-term future of resources, economies, and societies.

(Source: Downing, 2001)

National Strategy on Water Management: Tunisia

Current and projected water demand (%)

Drinking Irrigation Tourism	1996 11.5 83.7 0.7	2030 17.7 73.5 1.5
Industrial	4.1	7.3

- Resources management:
 - Mobilization, storage (over 1,000 hill reservoirs in 10 years) and transfer of the resources
 - Use of the nonconventional resources: saline and wastewater for irrigation (95,400 and 7,600 ha)
 - Desalinization
- Demand management:
 - Water saving in irrigation (up to 60% government subsidies), industry, and other uses.

Crop Liberalization: Egypt

- The recent Egyptian policy of crop liberalization is giving farmers the possibility of adapting to more suitable crops in each area;
- As result of this policy, the area sown with cotton has sharply decreased in recent years while the cereal area has increased.

Drought Management in the Mediterranean

Disaster management could be an effective adaptation option

Decreasing drought vulnerability is a "winwin" adaptation option.

WATER is a fundamental requirement for agriculture. That requirement is certain to increase along with the growth of population and living standards, especially in view of the prospect of a warmer climate imposed by the enhanced greenhouse effect.

Methods

Crop yields, water demands and nitrogen leaching are estimated with process-based crop models (calibrated and validated). The ratios (Kc) between simulated and actual crop (ET) are used to estimate regional water demand with CROPWAT, and are then adjusted by a regional irrigation efficiency.

Working with Different Models: Consistency, Scales, Calibration

Projections Using the Suite of Models

- Changes in run-off, water demands, and water system reliability
- Actual changes in crop yield based on consistent projections of changes in water supply and demand
- Changes in environmental stress due to human use of water resources
- Changes in water quality.

