United Nations Framework Convention on Climate Change

Supports de formation du GCE Inventaires nationaux des gaz à effet de serre

Gestion du manque de données

Version 2, avril 2012

Public cible et objectif des supports de formation

- Ces supports de formation sont destinés aux personnes disposant de connaissances de niveau <u>débutant</u> à <u>intermédiaire</u> sur l'élaboration des inventaires nationaux des gaz à effet de serre (GES).
- □ Après avoir lu cette présentation, en combinaison avec la documentation connexe, le lecteur doit :
 - Avoir un aperçu de la façon de traiter le manque de données
 - Disposer d'une compréhension globale des méthodes et des outils disponibles, ainsi que des principaux défis liés à l'élaboration de l'inventaire des émissions de GES dans cette zone particulière
 - Étre capable de déterminer les méthodes les mieux adaptées à la situation de son pays
 - Savoir où trouver des informations plus détaillées sur le sujet abordé.
- Ces supports de formation ont été élaborés principalement sur la base de méthodologies développées par le GIEC, ainsi le lecteur est toujours invité à consulter les documents originaux pour obtenir des informations plus détaillées sur un point particulier.

Sigles

□ **FE** Facteur d'émission

□ **UTCATF** Utilisation des terres, changement d'affectation des terres et

foresterie

Les problèmes

- ☐ Que faisons-nous lorsqu'il y a des écarts entre les données disponibles ?
- Nous ne disposons de données que pour les années 1995 et 2000.
- Nous voulons passer à une méthode de niveau 2, mais nous ne disposons que de données dissociées des cheptels démarrant l'année dernière.
- ☐ Le ministère de l'Énergie a cessé de recueillir des données sur le torchage du gaz naturel. Que faisons-nous ?

Cohérence des séries chronologiques

Les inventaires peuvent vous aider à comprendre les tendances des émissions et de	es
absorptions.	

- ☐ Ces tendances ne doivent être ni surestimées ni sous-estimées, autant qu'on puisse en juger.
- Les séries chronologiques doivent être calculées selon la même méthode et les mêmes sources de données pour toutes les années.
 - ❖ Dans les faits : il n'est pas toujours possible d'utiliser les mêmes méthodes et les mêmes données pour des séries chronologiques entières.

Faire face à la réalité

■ Le manque de données peut se produire car :

- Un nouveau facteur d'émission (FE) ou une nouvelle méthode pour lesquels des données historiques ne sont pas disponibles est utilisé
- De nouvelles données d'activité sont disponibles, mais pas pour les années pertinentes
- Il y a eu un changement dans la façon dont le FE est élaboré ou dont les données d'activité sont recueillies...
- ... Ou les données d'activités cessent d'être disponibles
- Une nouvelle catégorie de sources ou de pièges est ajoutée à l'inventaire, et pour laquelle les données historiques ne sont pas disponibles
- Des erreurs sont constatées dans les données historiques ou les calculs, erreurs qui ne peuvent être facilement corrigées.
- Ces problèmes peuvent être un défi, tout particulièrement pour les secteurs de l'agriculture et de l'UTCATF.

Les facteurs d'émission

- Reconnaître : utiliser un FE constant ne permet pas d'assurer la cohérence des séries chronologiques.
- Pour certains processus d'émission, les taux d'émission peuvent varier au fil du temps en raison des changements technologiques ou autres :
 - Non : Pour les procédés stoechiométriques
 - Oui : Pour de nombreux processus biologiques et impliquant une technologie spécifique.

Disponibilité des données

Les changements et le manque de données :

- Des améliorations plus dissociées ou autres dans la collecte des données (exemple, l'amélioration des enquêtes menées dans les années à venir)
- Les années manquantes ne sont plus traitées ou les données manquantes ne sont plus collectées.

Données périodiques :

- Collecte de données sur des années ne se suivant pas ou sur une base de roulement régional (c.-à.-d., chaque année, une région différente est étudiée)
- Commun pour le secteur de l'UTCATF (exemple, l'inventaire forestier n'est fait que tous les cinq ans).

Aucune donnée ?

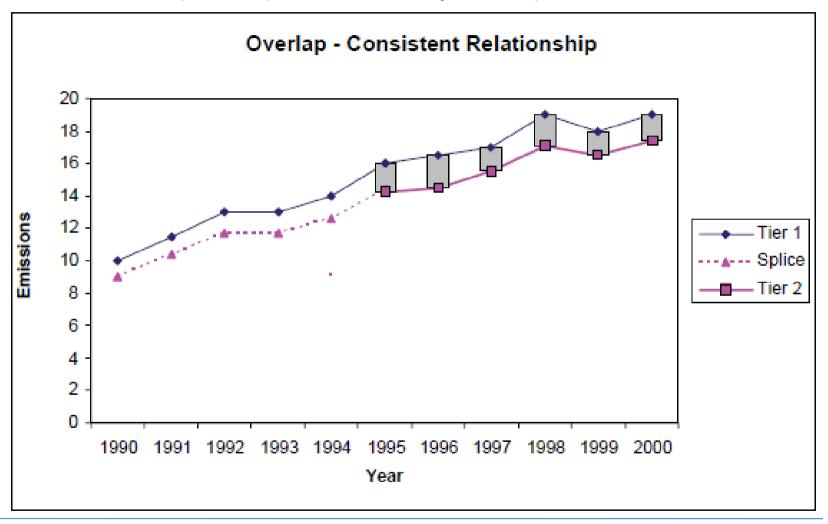
Les approches du raccordement d'indices et du comblement de lacunes

- Raccordement d'indices : combiner ou faire se rejoindre plusieurs méthodes ou séries de données pour former une série chronologique complète :
 - Traite les changements de méthode (exemple, lorsque seule une méthode de niveau 2 peut être appliquée à de nouvelles données, mais que le niveau 1 reste utilisé pour les données historiques)
 - Comble les manques dues à la périodicité de la collecte de données.
- Utiliser des données de substitution ou indirectes pour « créer » des données qui seront sinon manquantes.

Les approches du raccordement d'indices et du comblement de lacunes

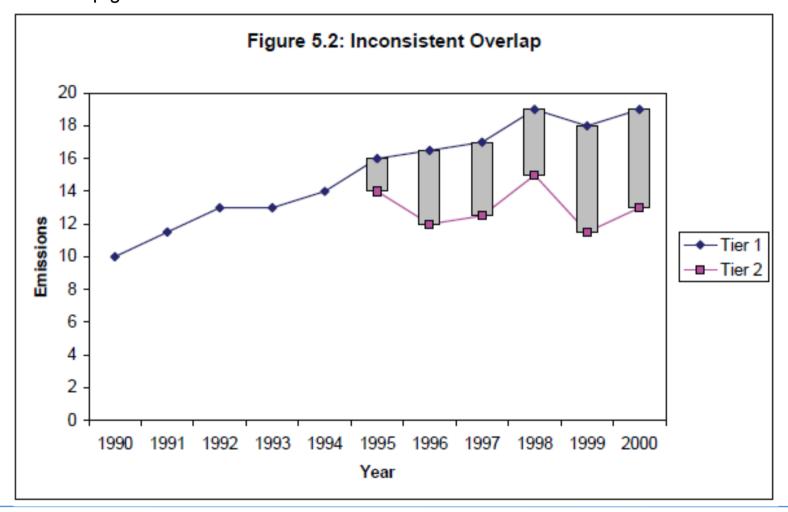
Che	vauc	hem	ent
	vauci		

- Données de substitution (exemple, des données indirectes corrélées)
- Interpolation/extrapolation
- Extrapolation de tendance.



- □ Calculer les émissions ou recueillir des données à l'aide de méthodes ou systèmes anciens et nouveaux pendant plusieurs années :
 - Peut être utilisé avec un chevauchement d'un an, mais doit être appliqué avec beaucoup d'attention.
- □ Développer une relation mathématique et l'utiliser pour recalculer les données historiques de manière à être en cohérence avec les nouvelles méthodes ou nouveaux systèmes.

Chevauchement - relation constante


□ Dans cet exemple, il est possible d'utiliser l'ajustement par chevauchement.

Chevauchement - relation fluctuante

□ Dans cet exemple, il n'est pas possible d'utiliser la méthode de chevauchement en raison d'une trop grande variabilité de la relation.

EQUATION 5.1

RECALCULATED EMISSION OR REMOVAL ESTIMATE COMPUTED USING THE OVERLAP METHOD

$$y_0 = x_0 \cdot \left(\frac{1}{(n-m+1)} \cdot \sum_{i=m}^n \frac{y_i}{x_i} \right)$$

Where:

y₀ = the recalculated emission or removal estimate computed using the overlap method

x₀ = the estimate developed using the previously used method

 y_i and x_i are the estimates prepared using the new and previously used methods during the period of overlap, as denoted by years m through n

□ Lorsque l'on constate une relation constante, la méthode par défaut consiste à utiliser un ajustement proportionnel des anciennes estimations ou données de façon à être en cohérence avec les nouvelles.

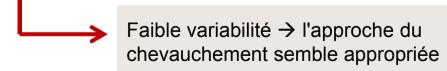
■ Exemple 1 : Utiliser l'approche du chevauchement pour estimer les émissions de GES pour la période 2001 - 2003, en utilisant les données ci-dessous.

	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Chiffres de niveau 1	4000	4000	4100	4200	4800	4900	5000	4800	4900	5000
Chiffres de niveau 2				4035	4598	4410	4500	4320	4513	4790

■ Exemple 1 : Étape 1

	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Chiffres de niveau 1	4000	4000	4100	4200	4800	4900	5000	4800	4900	5000
Chiffres de niveau 2				4035	4598	4410	4500	4320	4513	4790
Rapport niveau 2/niveau 1	ſ	→		0,96	0,96	0,90	0,90	0,90	0,92	0,96
				chaque a le niveau				port		
			Exem	ple, pou	r l'anné	e 2010):	•		

4790/5000 = 0,96


■ Exemple 1 : Étape 2

	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Chiffres de niveau 1	4000	4000	4100	4200	4800	4900	5000	4800	4900	5000
Chiffres de niveau 2				4035	4598	4410	4500	4320	4513	4790
Rapport niveau 2/ Niveau 1				0,96	0,96	0,90	0,90	0,90	0,92	0,96

Calculer la moyenne et l'écart type

Moyenne = 0.93

L'écart-type = 0,027

■ Exemple 1 : Étape 3

	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Chiffres de niveau 1	4000	4000	4100	4200	4800	4900	5000	4800	4900	5000
Chiffres de niveau 2	3713	3713	3806	4035	4598	4410	4500	4320	4513	4790
		A								
Rapport niveau 2/niveau 1		Т		0,96	0,96	0,90	0,90	0,90	0,92	0,96

Appliquer la moyenne pour calculer les données manquantes :

Année 2001 : 4 * 0,93 = 3,713

Année 2002 : 4 * 0,93 = 3,713

Année 2003 : 4,1 * 0,93 = 3,806

Précisions sur le chevauchement

- Souvenez-vous, il est crucial de disposer de plusieurs années de chevauchement pour
 l'appliquer correctement
- □ Cette méthode ne doit pas être appliquée inconditionnellement. Vous devez faire de votre mieux pour comprendre la relation entre les anciennes et les nouvelles méthodes :
 - Exemple, pourquoi l'ancienne méthode donne systématiquement des résultats de 10 à 15 % inférieurs à ceux de la nouvelle méthode ?
- ☐ Si vous ne pouvez pas expliquer la différence, vous n'êtes alors pas sûr que la nouvelle méthode est réellement meilleure !
- Le simple fait qu'une méthode ou un modèle est plus complexe ne signifie pas qu'il est plus précis!

Approche des données de substitution

- ☐ Trouver une variable de **substitution** (c.-à.-d. **indirecte**) en corrélation suffisante avec les données manquantes :
 - Peut être utilisée pour les données d'activité manquantes, pour les FE (qui changent chaque année) ou pour estimer les émissions :
 - → Exemple : Les paiements de permis voiture peuvent afficher une bonne corrélation avec l'utilisation de l'essence. Ainsi, les données de permis peuvent servir de substitut pour la consommation d'essence.
- Cette approche s'appuie sur des techniques utilisées dans les analyses (exemple, économétrie) statistiques :
 - Les techniques de régression sont utiles pour identifier les paramètres de substitution potentiels
 - Analyse de corrélation.

Les étapes de l'approche par substitution

Identifier les variables de substitution ou indirectes potentielles
Si vous disposez de données réelles, calculez des coefficients de corrélation simple :
Vous devez disposer de plus d'une année de données réelles pour établir une relation avec le paramètre de substitution.
Si la corrélation n'est pas évidente, il vous faut envisager des techniques de régression plus sophistiquées pour voir si une relation entre le paramètre réel et le paramètre de substitution peut être trouvée.
Si vous ne disposez pas de données réelles , vous devrez justifier pourquoi le

réelles.

paramètre de substitution est un indicateur indirect valide de la ou des variables

EQUATION 5.2

EMISSION/REMOVALS TREND ESTIMATES USING SURROGATE PARAMETERS

$$y_0 = y_t \bullet (s_0 / s_t)$$

Where:

y = the emission/removal estimate in years 0 and t

s = the surrogate statistical parameter in years 0 and t

☐ Cette formule suppose une relation proportionnelle simple entre la variable de substitution et la variable réelle.

L'approche par substitution

■ Exemple 2 : En utilisant le nombre de véhicules comme variable de substitution, estimer les émissions de CO₂ pour les variables ci-dessous.

Variable cible

	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
CO ₂ transport routier										

Variable de substitution connue

	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Nombre de véhicules										
routiers en circulation										
(en milliers)	3520	3520	360	3696	4224	431	4400	4224	4312	4400

Données relatives aux véhicules émanant de différentes études :

- •Étude des transports 1 → émissions Co₂ en 2009 pour une voiture moyenne = 190 g/km, km moyen par an = 13 000
- •Étude des transports 2 → émissions Co₂ en 2008 pour un véhicule routier moyen = 4410 kg de CO₂ par an
- •Étude des transports 3 → émissions Co₂ en 2007 pour un véhicule de tourisme moyen = 220 g/km, km moyen/an = 16 000
- •Étude des transports 4 → en 2008 les véhicules de transport de marchandises représentent 5 % de tous les véhicules routiers et émettent en moyenne 550 g/km.

L'approche par substitution

Exemple 2 : Étape 1

Données relatives aux véhicules émanant de différentes études

•Étude des transports 1 → émissions de Co₂ en 2009 pour ure voiture moyenne = 190 g/km, km moyen par an = 13 000

•Étude des transports 2 → émissions de Co₂ en 2008 pour un véhicule routier moyen = 4500 kg de CO₂ par an

•Étude des transports 3 → émissions de CO₂ en 2007 pour un véhicule de ourisme moyer = 220 kg de CO₂ par an

•Étude des transports 4 → en 2008 les véhicules de transport de marchandises représentent 5 % de tous les véhicules routiers et émettent en moyenne 550 g/km.

La moyenne pour tous les véhicules routie

Évaluer les paramètres de substitution potentiels

La moyenne pour tous les véhicules routiers
est plus appropriée lorsqu'on se concentre sur les émissions dues au transport routier dans son ensemble

		Tous véhicules	Tous véhicules	Voitures
		routiers	de tourisme	uniquement
Année		2008	2007	2009
kilométrage moyen par an	km/an		14000	13000
Facteur d'émission moyen	g CO ₂ /km		200	190
Émissions moyennes/ véhicule	kg CO₂/véhicule	4410	2800	2470

Collecte de données supplémentaires : Étude du trafic 5 → kilométrage moyen parcouru par an par les véhicules de transport de marchandises = 65 000 à 74 000 km

[4410 – 2800 * (100 % – 5 %)] / 5 % = 70 000, si les véhicules de marchandises parcourent en moyenne 70 000 km par an, les deux données sur « Tous véhicules routiers » et « Tous véhicules de tourisme » sont exactes.

□ Exemple 2 : Étape 1 Utiliser une variable et un paramètre de substitution pour le calcul

Variable de substitution connue

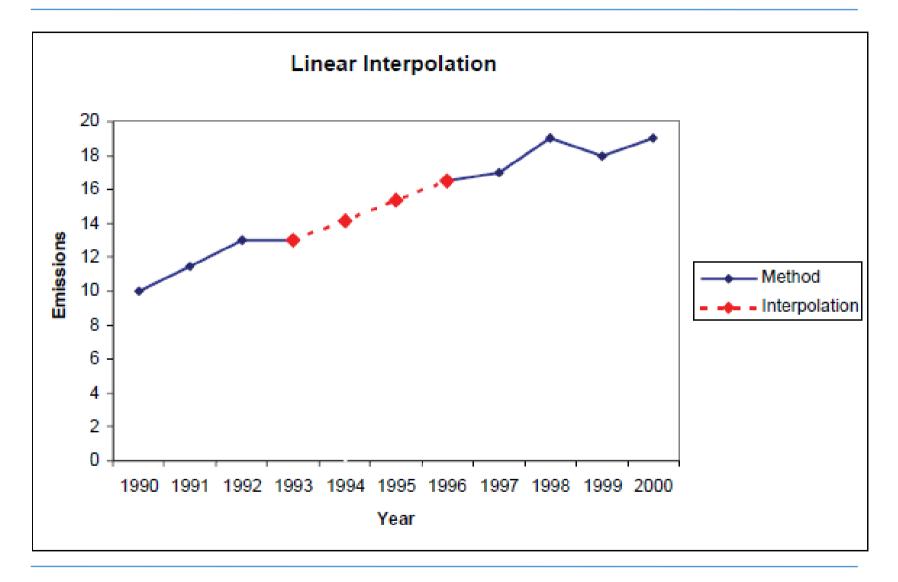
	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Nombre de véhicules										
routiers en circulation										
(en milliers)	3520	3520	3600	3696	4224	4310	4400	4400	4410	4450

Appliquer le paramètre de substitution (4410 kg de CO₂/véhicule) et calculer les émissions

Exemple, 4 224 000 véhicules * 4410 kg de CO₂/véhicule /1000 = 18 628 000 t de CO₂

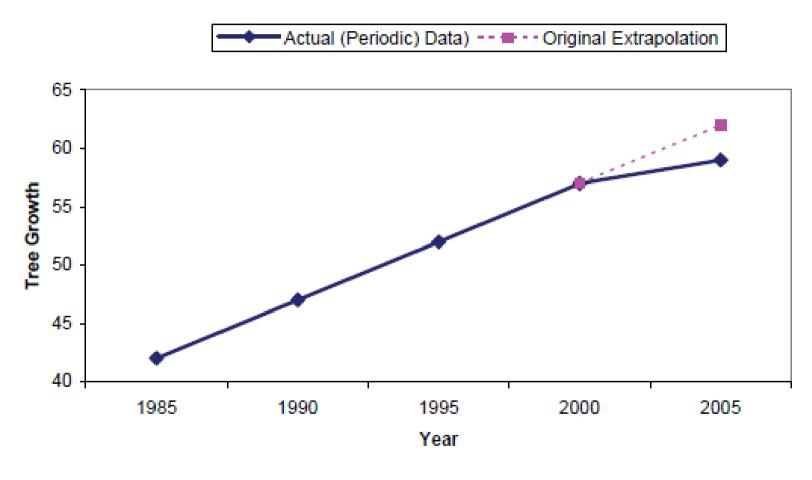
Variable cible d'émissions de CO₂ en milliers de tonnes métriques

	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Émissions des										
véhicules routiers	15523	15523	15911	16299	18628	9016	19404	19404	19448	19625
vernicules routiers	15525	15525	13911	10299	10020	19010	19404	19404	19440	_



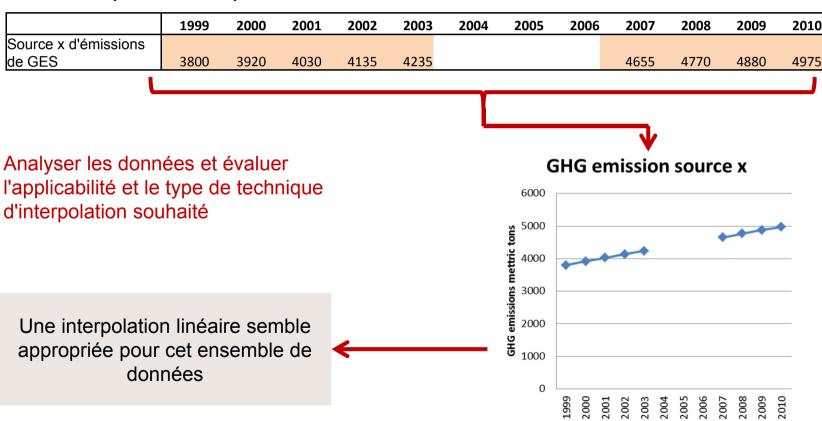
Interpolation et extrapolation

- Interpolation : Combler les manques dans les séries chronologiques existantes.
- Extrapolation : Combler les manques à la fin ou au début des séries chronologiques.
- Techniques :
 - Linéaires ou non linéaires, justifier le choix
 - Ne doivent pas être utilisées pour les variables affichant une grande variabilité d'une année sur l'autre.



Exemple d'interpolation

Linear Extrapolation in AFOLU


■ Exemple 3 : En utilisant la technique de l'interpolation, estimer les émissions de GES pour les années 2004 à 2006

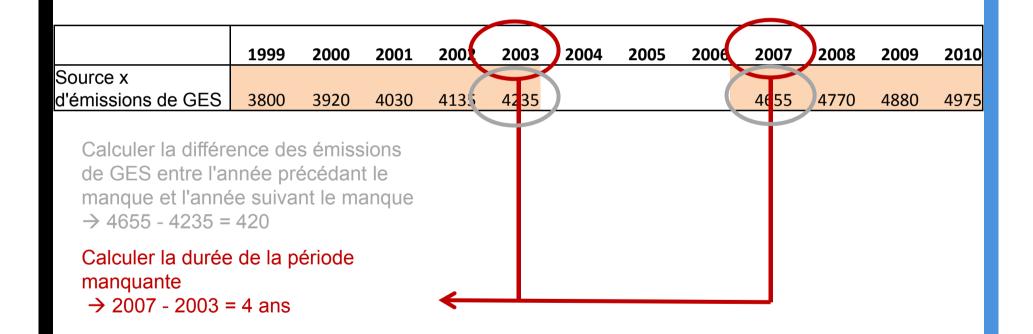
	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Source x												
d'émissions de GES	3800	3920	4030	4135	4235				4655	4770	4880	4975

Exemple d'interpolation

Exemple 3 : Étape 1

Exemple d'interpolation

■ Exemple 3 : Étape 2


	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Source x d'émissions										<u> </u>		
de GES	3800	3920	4030	4135	4235)			4655	4770	4880	4975

Calculer la différence des émissions de GES entre l'année précédant le manque et l'année suivant le manque

→ 4655 - 4235 = 420

☐ Exemple 3 : Étape 3

Exemple 3 : Étape 3

	1999	2000	2001	2001	2003	2004	2005	200€	2007	2008	2009	2010
Source x d'émissions												
de GES	3800	3920	4030	4135	42 35)			46 55	4770	4880	4975
	•						•					

Calculer la différence des émissions de GES entre l'année précédant le manque et l'année suivant le manque

→ 4655 - 4235 = 420

Calculer la durée de la période manquante

 \rightarrow 2007 - 2003 = 4 ans

Calculer la variation moyenne des émissions par année manquante → 420/4 = 105

■ Exemple 3 : Étape 3

	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Source x d'émissions de												
GES	3800	3920	4030	4135	4235	4340	4445	4550	4655	4770	4880	4975

Calculer la différence des émissions de GES entre l'année précédant le manque et l'année suivant le manque

→ 4655 - 4235 = 420

Calculer la durée de la période manquante

→ 2007 - 2003 = 4 ans

Calculer la variation moyenne des émissions par année manquante → 420/4 = 105 Calculer les émissions totales pour les années manquantes en ajoutant la variation moyenne par an

Émissions en 2004 = 4235 + 105 = 4340

Émissions en 2005 = 4340 + 105 = 4445

Émissions en 2006 = 4445 + 105 = 4550

Synthèse des approches de raccordement d'indices et de comblement des lacunes

Approche	Applicabilité	Commentaires
Chevauchement	Les données nécessaires pour appliquer à la fois l'ancienne et la nouvelle méthode doivent être disponibles pour au moins un an, de préférence plus.	Utiliser uniquement lorsque le chevauchement affiche un modèle qui semble fiable
Données de substitution	La date manquante est fortement corrélée avec les données indirectes	Nécessité de tester plusieurs variables de données indirectes potentielles
Interpolation	Pour les données périodiques ou les manques dans les séries chronologiques	Interpolation linéaire ou non linéaire. À n'utiliser que lorsque les données montrent une tendance constante
Extrapolation de tendance	Données manquantes au début ou à la fin de la série chronologique	À n'utiliser que lorsque la tendance est stable et susceptible d'être fiable. Ne doit être utilisée que sur un petit nombres d'années

Synthèse des commentaires

- □ Les approches privilégiées sont le chevauchement et la substitution, car :
 - Elles sont basées sur des données réelles
 - L'interpolation et l'extrapolation sont des projections efficaces supposant certaines tendances en l'absence de données.
- □ De même, dans la recherche, on ne considère par comme une bonne pratique le fait de simplement appliquer une méthode de comblement des lacunes de façon inconditionnelle :
 - Vous devez comprendre pourquoi votre approche est justifiée et être capable de l'expliquer de façon transparente.
 - Demandez-vous : est-ce que ce que je fais serait assez solide pour être soumis à un examen par les pairs dans une revue technique ?

United Nations Framework Convention on Climate Change

