Vulnerability and Adaptation Assessments Hands-On Training Workshop

for the Africa Region

Global Sea-Level Rise: Analytical Approaches

Maputo, Mozambique 18-22 April 2005

Julie Richards and Robert Nicholls University of Southampton, UK julie.richards@soton.ac.uk

Outline

- Sea-level rise (SLR)
 - Predictions
 - Scenarios
 - Global processes
 - Local uncertainties
 - Impacts
- Shoreline management and adaptation
- Methods to assess impacts of SLR
 - Levels of assessment
 - Screening
 - Vulnerability
 - Planning
- Review of African region situation
- Models
- Data sources

Current Global Predictions of Sea-Level Rise

- TAR range for global-mean rise in sea level is between 9 cm and 88 cm by 2100
- Change outside this range is possible, especially if Antarctica becomes a significant source
- There is a "commitment to sea-level rise" even if atmospheric greenhouse gas concentrations are stabilised

Global-Mean Sea-Level Rise 1990 to 2100 (SRES scenarios)

Relative sea-level changes

Processes Controlling Sea-Level Change

Global Components of Sea-Level Rise

Ocean volume controlled by:

- Ocean temperature thermal expansion
- Melting of land-based ice
 - Small glaciers
 - Greenland
 - Antarctica
- The hydrological cycle (including human influence)

Uncertainty in Local Predictions

- Relative SLR: global and regional components plus land movement
 - Land uplift will counter any global SLR
 - Land subsidence will exacerbate any global SLR
 - Other dynamic oceanic and climatic effects cause regional differences (oceanic circulation, wind and pressure, and ocean-water density differences add additional component)

Sea-Level Rise at New York City 1850 to 2100

Land Subsidence

Other Climate Change (Hurricane Andrew)

Impacts of Sea-Level Rise

- Why is SLR important?
- Physical impacts
- Socio-economic impacts
- Impact assessment

Elevation and Population Density Maps for Southeast Asia

Population and Population Density vs. Distance and Elevation in 1990

Coastal Megacities (> 8 million people) Forecast for 2010

National Vulnerability Profiles

Biogeophysical Effects of Sea-Level Rise

- Displacement of coastal lowlands and wetlands
- Increased coastal erosion
- Increased storm and flood damage
- Salinisation of surface and ground waters
- Plus others

Socio-Economic Impacts

- Loss of property and land
- Increased flood risk / loss of life
- Damage to coastal protection works and other infrastructure
- Loss of renewable and subsistence resources
- Loss of tourism, recreation and coastal habitats
- Impacts on agriculture and aquaculture through decline in soil and water quality

Definition of Impacts

l'and a la second a s

Shoreline Management and Adaptation

Responding to Coastal Change (including sea-level rise)

Shoreline Management and Adaptation

Methods to Assess Impacts of Sea-Level Rise

- Develop SLR scenarios
- Levels of assessment
- Screening assessment
- Vulnerability assessment
 - Erosion
 - Flooding
 - Coastal wetland loss
- Planning assessment

Coastal Vulnerability and Risk Assessment

- Three levels of assessment
 - Screening assessment (3-6 months)
 - Vulnerability assessment (1-2 years)
 - Planning assessment (ongoing)

Screening Assessment

- Rapid assessment to highlight possible impacts of a SLR scenario and identify information/data gaps
- Qualitative or semi-quantitative
- Steps
- 1. Collection of existing coastal data
- 2. Assessment of the possible impacts of a 1-m SLR
- 3. Implications of future development
- Possible responses to the problems caused by SLR

Step 1: Collection of Existing Data

- Topographic surveys
- Aerial/remote sensing images topography/land cover
- Coastal geomorphology classification
- Evidence of subsidence
- Long-term relative SLR
- Magnitude and damage caused by flooding
- Coastal erosion
- Population density
- Activities located on the coast (cities, ports, resort areas and tourist beaches, industrial and agricultural areas)

Step 2: Assessment of Possible Impacts of 1-m SLR

- Four impacts are considered
- 1. Increased storm flooding
- 2. Beach/bluff erosion
- 3. Wetland and mangrove inundation and loss
- 4. Salt water intrusion

Step 3: Implications of Future Developments

- New and existing river dams and impacts on downstream deltas
- New coastal settlements
- Expansion of coastal tourism
- Possibility of transmigration

Step 4: Responses to the SLR Impacts

- Planned retreat (i.e., setback of defences)
- Accommodate (i.e., raise buildings above flood levels)
- Protect (i.e., hard and soft defences, seawalls, beach nourishment)

Screening Assessment Matrix Biophysical vs. Socio-Economic Impacts

Biophysic- al Impact of Sea- Level Rise	Socio-economic impacts							
	Tourism	Human Settlements	Agriculture	Water Supply	Fisheries	Financial Services	Human Health	Others?
Inundation								
Erosion								
Flooding								
Salinisation								
Others?								

Vulnerability Assessment

The Co-Evolving Coastal System

Barriers to Conducting VA

- Incomplete knowledge of the relevant processes affected by SLR and their interactions
- Insufficient data on existing physical conditions
- Difficulty in developing the local and regional scenarios of future changes
- Lack of appropriate analytical methodologies
- Variety of questions raised by different sociopolitical conditions

Controls on Coastal Position

Erosion

- 70% of world's sandy beaches lost
- Integral response to changes in coastal system sediment budget
- Use of the Bruun Rule
- Limitations of the Bruun Rule

An Atoll

Bruun Rule

Bruun Rule (2)

R=G(L/H)S

where: $H = B + h_*$

- R = shoreline recession due to a sea-level rise S
- h_{*} = depth at the offshore boundary
- B = appropriate land elevation
- L = active profile width between boundaries
- G = inverse of the overfill ratio

Limitations of the Bruun Rule

- Only describes one of the processes affecting sandy beaches
- Indirect effect of sea-level rise
 - Estuaries and inlets maintain equilibrium
 - Act as major sinks
 - Sand eroded from adjacent coast
 - Increased erosion rates
- Response time best applied over long timescales

Flooding

- Increase in flood levels due to rise in sea level
- Increase in flood risk
- Increase in populations in coastal floodplain
- Adaptation
 - Increase in flood protection
 - Management and planning in floodplain

Coastal Flood Plain

Global Incidence of Flooding No Sea-Level Rise

Vulnerable Regions Mid-estimate (45 cm) by the 2080s

Impacts of Flooding on Arable Agriculture in 2050 – No Adaptation

Global Impacts of Flooding in 2050 Effects of Mitigation

The Thames Barrier

Flood Methodology

Ecosystem Loss

- Inundation and displacement of wetlands
 - E.g., mangroves, saltmarsh, intertidal areas
- Areas provide
 - Flood protection
 - Nursery areas for fisheries
 - Important for nature conservation
- Loss of valuable resources, tourism

Coastal Ecosystems

KEY:

mangroves, o saltmarsh, x coral reefs

Coastal Squeeze (of coastal wetlands)

Mangrove Swamp

Areas Most Vulnerable to Coastal Wetland Loss

Saltmarsh Losses to 2050

Wetland Loss Model Structure

Wetland Vertical Response Model

RSLR* = RSLR/TR

where:

- RSLR = the rate of relative sea-level rise (meters/century)
- TR = the mean tidal range on spring tides in meters
- RSLR* > RSLR*_{crit}
- RSLR* ≤ RSLR*_{crit}

no loss

loss

Planning Assessment

Ongoing investigation and formulation of policy

- Requires information on
 - Role of major processes in sediment budget
 - Including human influences
 - Other climate change impacts
- Example of assessment from the UK
- Combined flood hazard and erosion assessment

The Problem Cliff Protection Has Local and Wider Effects

Erosion Often Exported Alongshore

Coastal Flood Risk Exacerbated by Declining Sediment Input

- Beach evolution
- Defence degradation/upgrades
- Socio-economic changes

Sea-level rise

Increased storminess

Goals for Planning Assessment

- For future climate and protection scenarios, explore interactions between cliff management and flood risk within sediment sub-cell (in Northeast Norfolk)
- In particular, quantify
 - Cliff retreat and associated impacts
 - Longshore sediment supply/beach size
 - Flood risk
 - Integrated flood and erosion assessment

Overall Method

Bathymetry and Wave Modelling

SCAPE Model of Cliff Retreat

Future Policy Maintain Defences, 6 mm/yr Sea-Level Rise

Future Policy Abandon All Defences, 6 mm/yr Sea-Level Rise

Policy Comparison Maximum Retreat at Abandoned Defences

for Climate Change Research

Erosion Visualisation Protection Abandoned (10 year time steps)

Conclusions

- 45 sea-level/wave/protection scenario combinations assessed
- Used to assess implications for flood risk
- Data management, visualisation, and stakeholder involvement used

 Further improvements to the overall method are being developed
Yndall°Centre for Climate Change Research

Review of African Region

- Coast relatively undeveloped
- Coastal hazards a concern
- Rapidly growing coastal population
- Data availability issues
- Lack of long-term sea level data

Impacts and Costs for 1m Sea-Level Rise (1990)

Country	Land Loss		Population affected		Capital value loss		Adaptation/ protection costs	
	Km ²	%	1000s	%	Million US\$	%GNP	Million US\$	%GNP
Senegal	6000	3.1	>110	>1	>500	>12	>1000	>21
Nigeria	18000) 2	3200	4	17000	52	>1400	>4
Benin	230	0.2	1350	25	118	12	>400	>41

The Nile Delta

Models

- DIVA: Dynamic and Interaction Vulnerability Assessment
 - Project: DINAS-Coast
- RegIS2 : Development of a metamodel tool for regional integrated climate change management
- COSMO
- RamCo

ut analysis

Input parameters

- o Global data
- o Country data
- o Administrative unit data

Results

- • Tidal basin data
- • River data
- • World Heritage Site data
- o Coastline segment data
- Initial values
- O Country data
- o Coastline segment data
- Results
- o Country data
- o Administrative unit data
- • Tidal basin data
- o River data
- • Theatened world heritage
- Coastline segment

Coastline	segment	:							
	Parameters								
Locations	Protection cost	Beach nourishment	Beach Nourishment Costs	<u>Costs of</u> land loss	Costs of salinity intrusion	Land loss total	Migration	Migration costs	Protection C Level
	\$	m^3/yr	\$/yr	\$/yr	\$/yr	m^2	#/yr	\$/yr	year
1286 South Africa	0	0	0	0	0	0.00E+00	0	0	217
1287 South Africa	25	3015473	18092840	27805	0	2.23E+05	14	147819	149
•									•
Columns: 🖞	י װָ װָ 🗰 🔺	Z ZA Rows	: =+ =: =:	ŧ ĄĮ ŽĮ	. 6				7 🖓

박 번 때 쀼 축 축 Rows: 🖦 🛋 📑 📑 🎒 🕌 L.J. Columns:

Data Sources

- IPCC Data Distribution Centre
- Sea level data
 - Permanent service for mean sea level
 - GLOSS Global Sea-Level Observing System
- Remotely sensed data
 - Land Processes Distributed Active Archive Centre (NASA)
 - Shuttle radar topography mission

GLOSS Tide Gauges

GTOPO30 Global Digital Elevation Model

SRTM Data – Morocco and Gibraltar (vertically exaggerated)

Data Sources (2)

- Local observational data
 - Sea level measurements
 - Elevation/topography
 - Wave recording
 - Aerial photography
 - Habitat mapping

Concluding Remarks

- Sea-level rise could be a serious problem, but the uncertainties are large
- Impacts are strongly influenced by human choice
- Reducing greenhouse gas emissions reduces but does not avoid sea-level rise impacts
- Preparing to adapt would seem prudent, in the context of multiple stresses and managing existing problems

