

Industrial Processes and Product Use (IPPU)

Africa Regional Workshop on the Building of Sustainable National Greenhouse Gas Inventory Management Systems, and the Use of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories

> 14-18 March 2016, Lesotho, Maseru Pavel Shermanau, IPCC TFI TSU

INTERGOVERNMENTAL PANEL ON Climate change

Outline

- 1. IPPU importance
- 2. What is the IPPU Sector?
- 3. IPPU Categories:
 - **2A: Mineral Industry**
 - **2B: Chemical Industry**
 - **2C: Metal Industry**
 - 2D: Non-Energy Products from Fuels & Solvent Use
 - **2E: Electronics Industry**
 - 2F: Product Uses as Substitutes for Ozone Depleting Substances
 - 2G: Other Product Manufacture and Use (Electrical Eq., Military Apps, Medical Apps)
- 4. Data and Cross-Checks
- 5. Conclusion

Importance for Non-Annex I Parties

- IPPU sector is considered to be less significant compared to Energy and AFOLU
- Situation varies from country to country
- IPPU sources may become significant in the future as developing countries' economies and industries grow
- Inclusion of F-gases estimates can contribute significantly to the IPPU emissions and influence the total estimates
- IPPU emissions estimation is important to find opportunities for GHG abatement

IPPU Sector

IPPU – GHG emissions:

- **1. Industrial Processes**
- 2. Product Use

1. Industrial Processes that chemically or physically transform materials releasing GHG:

- chemically: $NH_3 + O_2 = 0.5 N_2O\uparrow + 1.5 H_2O$ (nitric acid production)
- physically: CaCO₃ + (Heat) = CaO + CO₂↑

2. Product Use: GHGs are used in products such as refrigerators, foams or aerosol cans

Note: significant time can elapse between the manufacture of the product and the release of GHG. The delay can vary from a few weeks (e.g., for aerosol cans) to several decades (e.g., rigid foams). In refrigeration a fraction of GHG used in the products can be recovered at the end of product's life and either recycled or destroyed.

IPPU Sector

Not IPPU:

- ➢ Emissions from Fuel combustion in Industrial Sector for energy purposes (e.g., cement production) → Energy Sector
- ➢ Fugitive emissions in Oil/Gas industries → Energy Sector

Demarcation: IPPU vs. Energy

Combustion emissions from fuels obtained from the <u>feedstock</u> for an IPPU process will normally be allocated the source category in which the process occurs (*these source categories are normally 2B and 2C*). However, if the derived fuels are transferred for combustion in another source category, the emissions should be reported in the appropriate part of the Energy Sector (*normally 1A1 or 1A2*).


Example:

if blast furnace gas is combusted entirely within the Iron and Steel industry (whether for heating blast air, site power needs or for metal finishing operations) the associated emissions are reported in the IPPU source subcategory 2C1. If part of the gas is delivered to a nearby brick works for heat production or a main electricity producer then the emissions are reported in the Energy source subcategories (1A2f or 1A1a).

✓ Box 1.1 Chapter 1 Volume 3 2006 IPCC Guidelines

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

2 Industrial Processes and Product Use ^(Note 1, 2)	CO ₂	CH4	N ₂ O	HFCs	PFCs	SF6	Other halo- genated Gases (Note3)
2A Mineral Industry							
2A1: Cement Production	Х	*					
2A2: Lime Production	Х	*					
2A3: Glass Production	X	*					
2A4: Other Process Uses of Carbonates							
2A4a: Ceramics	Х	÷					
2A4b: Other Uses of Soda Ash	Х	*					
2A4c: Non Metallurgical Magnesia Production	Х	×					
2A4d: Other	Х	*					
2A5: Other	Х	÷	*				
2B Chemical Industry							
2B1: Ammonia Production	Х	÷	*				
2B2: Nitrie Acid Production	*	*	Х				
2B3: Adipic Acid Production	*	*	Х				
2B4: Caprolactam, Glyoxal and Glyoxylic Acid Production	*	×	X				
2B5: Carbide Production	Х	Х	*				
2B6: Titanium Dioxide Production	Х	÷	*				
2B7: Soda Ash Production	Х	÷	*				
2B8: Petrochemical and Carbon Black Production							
2B8a: Methanol	Х	X	*				
2B8b: Ethylene	Х	Х	*				
2B8c: Ethylene Dichloride and Vinyl Chloride Monomer	Х	X	*				
2B8d: Ethylene Oxide	Х	Х	*				
2B8e: Acrylonitrile	Х	Х	*				
2B8f: Carbon Black	Х	Х	*				
2B9: Fluorochemical Production (Note 4)							
2B9a: By-product Emissions (Note 5)				X	Х	Х	X
2B9b: Fugitive Emissions (Note 5)				X	Х	Х	Х
2B10: Other	*	*	*	×	÷	*	*

2 Industrial Processes and Product Use ^(Note 1, 2)	CO ₂	CH4	N ₂ O	HFCs	PFCs	SF ₆	Other halo- genated Gases (Note3)
2C Metal Industry							
2C1: Iron and Steel Production	Х	X	×				
2C2: Ferroalloys Production	Х	X	×				
2C3: Aluminium Production	Х	×			Х		
2C4: Magnesium Production (Note 6)	Х			X	X	X	X
2C5: Lead Production	Х						
2C6: Zine Production	Х						
2C7: Other	*	×	×	*	×	×	×
2D Non-Energy Products from Fuels and Solvent Use (Note	7)						
2D1: Lubricant Use	Х						
2D2: Paraffin Wax Use	Х	×	×				
2D3: Solvent Use (Note 8)							
2D4: Other (Note 9)	×	×	×				
2E Electronics Industry							
2E1: Integrated Circuit or Semiconductor (Note 10)	*		*	X	X	Х	X
2E2: TFT Flat Panel Display (Note 10)				X	X	X	X
2E3: Photovoltaics (Note 10)				X	X	X	X
2E4: Heat Transfer Fluid (Note 11)							X
2E5: Other	*	×	×	×	*	×	*

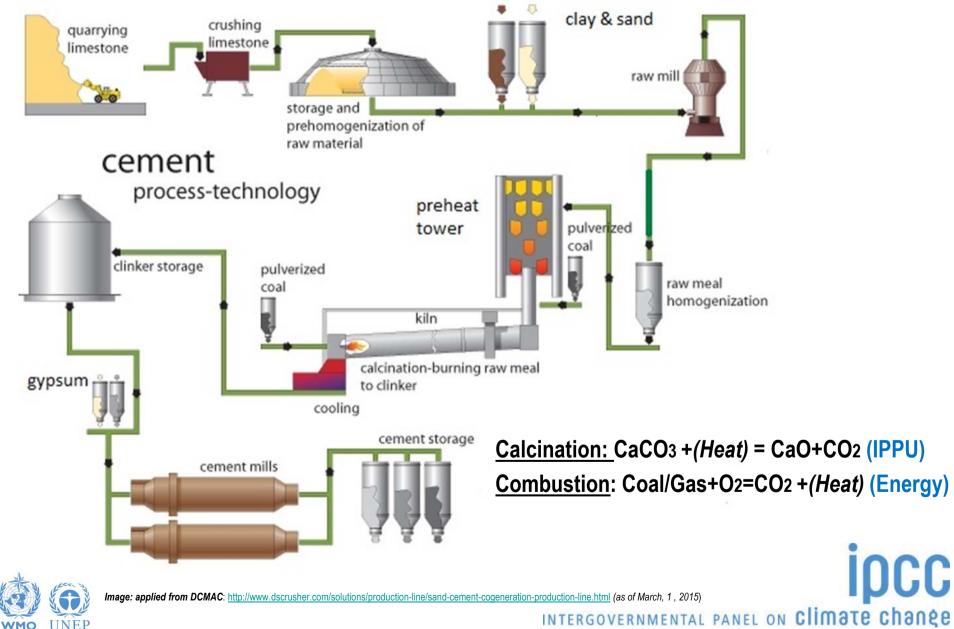
2 Industrial Processes and Product Use ^(Note 1, 2)	CO ₂	CH4	N ₂ O	HFCs	PFCs	SF6	Other halo- genated Gases (Note3)
2F Product Uses as Substitutes for Ozone Depleting Substa	nces						
2F1: Refrigeration and Air Conditioning							
2F1a: Refrigeration and Stationary Air Conditioning	*			Х	Х		×
2F1b: Mobile Air Conditioning	*			Х	Х		*
2F2: Foam Blowing Agents	*			X	÷		*
2F3: Fire Protection	*			Х	Х		*
2F4: Aerosols				Х	Х		×
2F5: Solvents (Note 12)				Х	Х		*
2F6: Other Applications	*	*	*	Х	Х		*
2G Other Product Manufacture and Use							
2G1: Electrical Equipment							
2G1a: Manufacture of Electrical Equipment (Note 13)					Х	Х	×
2G1b: Use of Electrical Equipment (Note 13)					Х	Х	*
2G1c: Disposal of Electrical Equipment (Note 13)					Х	Х	*
2G2: SF ₆ and PFCs from Other Product Uses		_					
2G2a: Military Applications					×	Х	×
2G2b: Accelerators (Note 14)					*	Х	*
2G2c: Other					Х	Х	×
2G3: N ₂ O from Product Uses							
2G3a: Medical Applications			X				
2G3b: Propellant for Pressure and Aerosol Products			X				
2G3c: Other			X				
2G4: Other	*	*		*			*
2H Other							
2H1: Pulp and Paper Industry (Note 15)	*	*					
2H2: Food and Beverages Industry (Note 15)	×	*					
2H3: Other	*	*	*				

IPPU Gases

> A wide variety of gases:

- CO₂, CH₄, N₂O
- HFCs, PFCs, SF₆
- Other halogenated gases
- Ozone/aerosol precursors (e.g., NMVOCs)
- H₂O and gases controlled by the Montreal Protocol (e.g., CFCs, HCFCs) are not included
- > Under the UNFCCC, non-Annex I Parties:
 - should report CO_2 , CH_4 and N_2O
 - are encouraged to report HFCs, PFCs, SF₆ and precursors
 - ✓ Inclusion of F-gases is important because of their high global warming potential (GWP), substantial use in industrial processes and in households, significant opportunities for GHG abatement

2A: Mineral Industry


- Transformation of carbonate-contained compounds limestone, dolomite, etc. (CaCO3, MgCO3, Na2CO3)
- CO₂ Emissions

Code	Category	Default EF
2A1:	Cement Production	0.51 t CO ₂ /t clinker
2A2:	Lime Production	0.75 t CO ₂ /t lime
2A3:	Glass Production	0.10 t CO ₂ /t glass
2A4:	Other Process Uses of Carbonates	
2A4a:	Ceramics	Chapter 2.5
2A4b:	Other Uses of Soda Ash	0.41 t CO ₂ / t soda ash
2A4c:	Non Metallurgical Magnesia Production	0.52 t CO ₂ /t magnesite
2A4d:	Other	
2A5:	Other	

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

2A1: Cement production

CO₂ from Cement Production (Tier 1)

To estimate clinker production:

- > National-level data should be collected on:
 - Cement production by type (Portland, masonry, etc.)
 - Clinker fraction by cement type
- If detailed information on cement type is not available, multiply total cement production by:
 - Default Ccl = 0.75 (if blended/'masonry' is much)
 - Default Ccl = 0.95 (if all is essentially 'Portland')
- > Data should be obtained on the amount of clinker imported and exported

CO₂ from Cement Production (Tier 1)

CO₂ Emissions = AD clinker production x EF clinker

CO₂ Emissions = [$\Sigma(M_{c,i} \times C_{CI,i})$ – Im + Ex] x EF_{CIc}

- **M**_{c,i} mass of cement produced of type *i*, tonnes
- $C_{Cl,i}$ clinker fraction of cement type *i*, fraction
- Im imports for consumption of clinker, tonnes
- **Ex** exports of clinker, tonnes

 EF_{Clc} - emission factor for clinker, tonnes CO_2 /tonne clinker

Default EF_{CIc} = 0.52 tonnes CO₂/tonne clinker (corrected for cement kiln dust (CKD))

CO₂ from Cement Production (Tier 2)

<u>**Tier 2**</u> includes a correction addition for emissions associated with Cement Kiln Dust (**CKD**) not recycled to the kiln which is considered to be 'lost' and associated emissions are not accounted for by the clinker:

CO₂ Emissions = $M_{cl} \times EF_{cl} \times CF_{CKD}$ CF_{CKD} = 1 + (M_d / M_{cl}) * C_d * F_d * (EF_c / EF_{cl})

 $\textbf{CF}_{\texttt{CKD}}$ - emissions correction factor for CKD, dimensionless

- $M_{\tt d}\,$ weight of CKD not recycled to the kiln, tonnes
- $M_{\mbox{\scriptsize cl}}$ weight of clinker produced, tonnes
- **C**_d fraction of original carbonate in the CKD (i.e., before calcination), fraction
- ${\bf F}_{\tt d}~$ fraction calcination of the original carbonate in the CKD, fraction
- \textbf{EF}_{c} emission factor for the carbonate, tonnes CO2/tonne carbonate
- **EF**_{cl} emission factor for clinker uncorrected for CKD, tonnes CO2/ tonne clinker (i.e., 0.51)

CO₂ from Cement Production (Tier 3)

- Limestones and shales (raw materials) also may contain a proportion of organic carbon (kerogen); other raw materials (e.g., fly ash) may contain carbon residues, which would yield <u>additional CO2</u> when burned
- > Detailed plant-level data on the carbonate raw materials is needed

TIER 3: EMISSIONS BASED ON CARBONATE RAW MATERIAL INPUTS TO THE KILN $CO_2 Emissions = \sum_i (EF_i \bullet M_i \bullet F_i) - M_d \bullet C_d \bullet (1 - F_d) \bullet EF_d + \sum_k (M_k \bullet X_k \bullet EF_k)$ Emissions from carbonates Emissions from uncalcined CKD Emissions from carbon-bearing non-not recycled to the kiln

2B: Chemical Industry

Code	Category	Default EF				
		CO 2	N ₂ O	CH4		
2B1:	Ammonia Production	Х				
2B2:	Nitric Acid Production		Х			
2B3:	Adipic Acid Production		Х			
2B4:	Caprolactam, Glyoxal and Glyoxylic Acid Production		X X X			
2B5:	Carbide Production - SiC - CaC ₂	X X		Х		
2B6:	Titanium Dioxide Production	Х				
2B7:	Soda Ash Production	Х				

2B: Chemical Industry

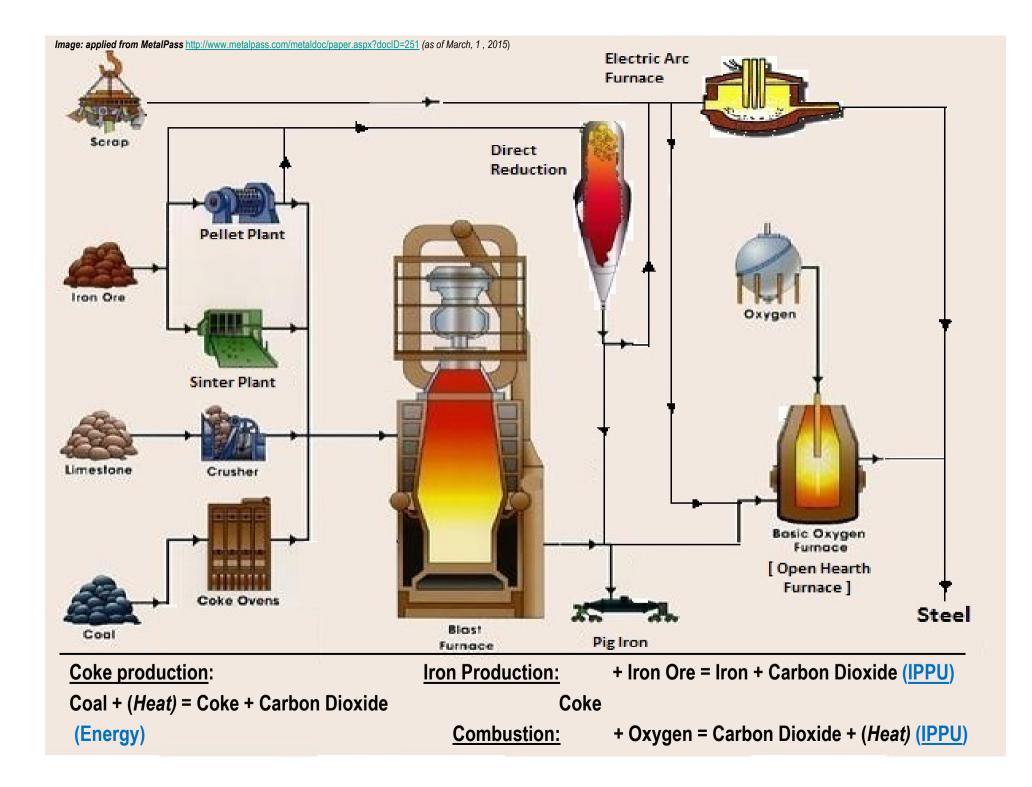
Code	Category		Default E	F
		CO ₂	CH4	F-gases
2B8:	Petrochemical and Carbon Black Production			
2B8a:	Methanol	Х	Х	
2B8b:	Ethylene	Х	Х	
2B8c:	Ethylene Dichloride and Vinyl Chloride Monomer	X X	Х	
2B8d:	Ethylene Oxide	Х	Х	
2B8e:	Acrylonitrile	Х	Х	
2B8f:	Carbon Black	Х	Х	
2B9:	Fluorochemical Production			
2B9a:	By-product Emissions			Х
2B9b:	Fugitive Emissions			Х
				io

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

2B1: Ammonia Production

\circ CO₂ associated with urea production & use:

- 1996 GL: all these emissions were implicitly included in CO₂ from Ammonia Production
- 2006 GL: CO₂ recovered in the ammonia production process for urea production should be deducted from CO₂ emissions from 2B1 Ammonia Production
- CO₂ emissions from urea use/incineration should be reported in the category where they occur, e.g.:
 - Use of urea-based catalysts (Energy Road Transport)
 - Urea application to agricultural soils (AFOLU)
 - Incineration of urea-based products (Waste)
- Thus, now, proper account can be taken for urea produced in ammonia plants



2C: Metal Industry

Code	Category	CO ₂	CH4	F-gases
2C1:	Iron and Steel Production	Х	Х	
2C2:	Ferroalloys Production	Х	Х	
2C3:	Aluminium Production	Х		Х
2C4:	Magnesium Production	Х		Х
2C5:	Lead Production	Х		
2C6:	Zinc Production	Х		
2C7:	Other			

2C1: CO₂ from Iron and Steel Production (Tier 1)

CO₂ emissions from Iron & Steel production:

 CO_2 Emissions = $\Sigma(AD_i \times EF_i)$

AD_i - quantity of material *i*, tonnes
 EF_i - emission factor for production of material *i*, tonnes CO₂/tonne material *i* produced

Material <i>i</i>	Default EF	Global average default EF for Steel
	tonne C	CO2/tonne material <i>i</i>
 Crude steel from Basic Oxygen Furnace 	1.46	
 Crude steel from Electric Arc Oxygen Furnace 	0.08	1.06
 Crude steel from Open Hearth Furnace 	1.72	
 Pig iron not converted to steel 	1.35	(If activity data on steel
 Direct reduced iron 	0.70	production for each process is not available, multiply total
Sinter	0.20	steel production by this EF)
 Pellet 	0.03	

2C1: CO₂ from Iron and Steel Production (Tier 2)

$$CO_{2} \text{ EMISSIONS FROM IRON \& STEEL PRODUCTION (TIER 2)}$$

$$E_{CO2,non-energy} = \left[PC \bullet C_{PC} + \sum_{a} (COB_{a} \bullet C_{a}) + CI \bullet C_{CI} + L \bullet C_{L} + D \bullet C_{D} + CE \bullet C_{CE} + \sum_{b} (O_{b} \bullet C_{b}) + COG \bullet C_{COG} - S \bullet C_{S} - IP \bullet C_{IP} - BG \bullet C_{BG} \right] \bullet \frac{44}{12}$$

Where, for iron and steel production:

 $E_{CO2, non-energy}$ = emissions of CO₂ to be reported in IPPU Sector, tonnes

PC = quantity of coke consumed in iron and steel production (not including sinter production), tonnes

 COB_a = quantity of onsite coke oven by-product *a*, consumed in blast furnace, tonnes

CI= quantity of coal directly injected into blast furnace, tonnes

L = quantity of limestone consumed in iron and steel production, tonnes

D = quantity of dolomite consumed in iron and steel production, tonnes

CE = quantity of carbon electrodes consumed in EAFs, tonnes

- O_b = quantity of other carbonaceous and process material *b*, consumed in iron and steel production, such as sinter or waste plastic, tonnes
- COG= quantity of coke oven gas consumed in blast furnace in iron and steel production, m³ (or other unit such as tonnes or GJ. Conversion of the unit should be consistent with Volume 2: Energy)
- S = quantity of steel produced, tonnes
- IP = quantity of iron production not converted to steel, tonnes
- BG = quantity of blast furnace gas transferred offsite, m³ (or other unit such as tonnes or GJ. Conversion of the unit should be consistent with Volume 2: Energy)

 C_x = carbon content of material input or output x, tonnes C/(unit for material x) [e.g., tonnes C/tonne]

INTERGOVERNMENTAL PANEL ON Climate change

2D: Non-Energy Products from Fuels and Solvent Use

- ➢ GHG emissions from <u>use</u> of non-energy products (lubricants, waxes, greases, solvents) other than:
 - combustion for energy purposes;
 - use as feedstock or reducing agent;
 - incineration of waste oils/lubricants with/without energy recovery (Energy/Waste Sector).
- > A small proportion of non-energy products oxidises during use
- Focus on direct CO₂ emissions and substantial NMVOC/CO emissions which eventually oxidise to CO₂ in the atmosphere

Code	Category	CO 2	NMVOC, CO
2D1:	Lubricant Use	Х	
2D2:	Paraffin Wax Use	Х	
2D3:	Solvent Use		Х
2D4:	Other (asphalt production and use)		Х

INTERGOVERNMENTAL PANEL ON Climate change

2E: Electronics Industry

Code	Category
2E1:	Integrated Circuit or Semiconductor
2E2:	TFT Flat Panel Display
2E3:	Photovoltaics
2E4:	Heat Transfer Fluid
2E5:	Other

Gases: CF4, C2F6, C3F8, c-C4F8, c-C4F8O, C4F6, C5F8, CHF3, CH2F2, nitrogen trifluoride (NF3), sulfur hexafluoride (SF6)

Electronics industry:

several advanced electronics manufacturing processes utilise fluorinated compounds for plasma etching silicon containing materials, cleaning reactor chambers, and temperature control. The specific electronic industries include semiconductor, thin-film-transistor flat panel display (TFT-FPD), and photovoltaic (PV) manufacturing

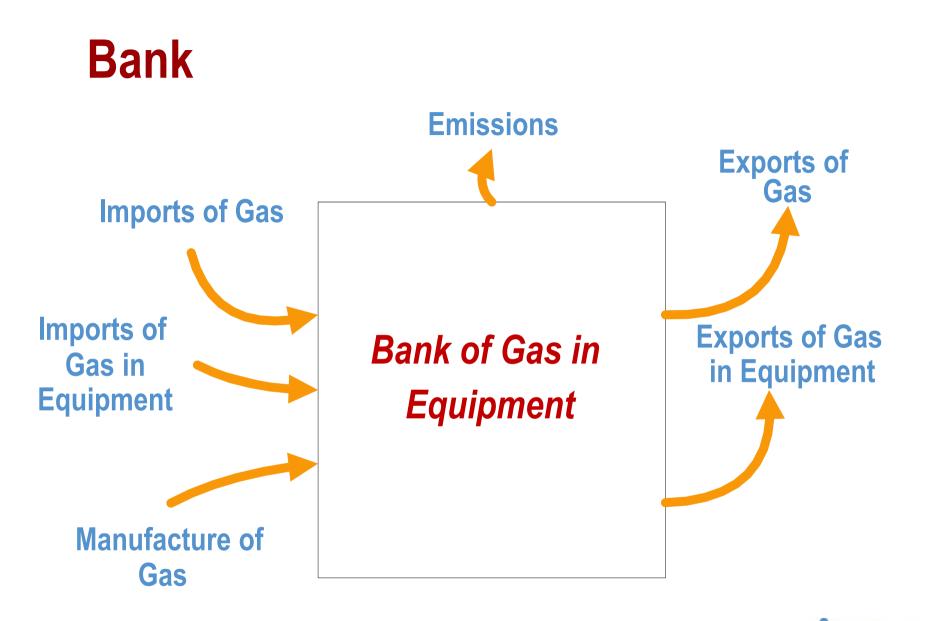
2F: Fluorinated Substitutes for ODS

Code	Category	HFCs	PFCs
2F1:	Refrigeration and Air Conditioning	Х	Х
2F1a:	Refrigeration and Stationary Air Conditioning	Х	Х
2F1b:	Mobile Air Conditioning	Х	Х
2F2:	Foam Blowing Agents	Х	Х
2F3:	Fire Protection	Х	Х
2F4:	Aerosols	Х	Х
2F5:	Solvents	Х	Х
2F6:	Other Applications	Х	Х

2F: Fluorinated Substitutes for ODS

- **Applications or Sub-applications** major groupings of current and expected usage of the ODS substitutes
- Actual emissions vs. Potential emissions (2006 vs.1996)
- **Prompt emissions** (within 2 years) and Delayed emissions
- **Bank** total amount of substances contained in existing equipment, chemical stockpiles, foams, other products not yet released to the atmosphere (+ExIm)
- Approaches:
 - ✓ Emission Factor (a) and Mass-balance (b)✓ Tier 1 and Tier 2

Actual emissions vs. Potential emissions


- The 2006 IPCC Guidelines provide with methods for estimating <u>actual emissions</u> of ODS substitutes in contrast to <u>potential emissions</u> approach (1996 IPCC Guidelines) taking into account the time lag between consumption of ODS substitutes and emissions.
- <u>Potential emissions approach assumes that all emissions from an activity occur</u> in the current year (manufacture + import - export - destruction), ignoring the fact they will occur over many years, thus estimates may become very inaccurate

Example. A household refrigerator emits little or no refrigerant through leakage during its lifetime and most of its charge is not released until its disposal, many years after production. Even then, disposal may not entail significant emissions if the refrigerant and the blowing agent in the refrigerator are both captured for recycling or destruction

- Use of *actual emissions* allows to:
 - $\checkmark\,$ accurately estimate emissions of ODS substitutes
 - ✓ proper address emission reductions of abatement techniques

INTERGOVERNMENTAL PANEL ON Climate change

Bank

• Where delays in emission occur, the cumulative difference between the chemical that has been consumed in an application and that which has already been released is known as a <u>bank</u> (refrigeration and air conditioning, fire protection, closed-cell foams).

Example. Blowing agent still present in foamed products which may have already been land-filled is still part of the bank, since it is chemical which has been consumed and still remains to be released.

• Estimating the size of a bank in an application is typically carried out by evaluating the historic consumption of a chemical and applying appropriate emission factors. It is also sometimes possible to estimate the size of bank from a detailed knowledge of the current stock of equipment or products.

Example. In mobile air conditioning - the automobile statistics may be available providing information on car populations by type, age and even the presence of air conditioning. With knowledge of average charges, an estimate of the bank can be derived without a detailed knowledge of the historic chemical consumption, although this is still usually useful as a cross-check.

...it is <u>good practice</u> to consider the number and relevance of sub-applications, the data availability, and the emission patterns...for rigorous emissions estimates, inventory compilers are likely to favour estimating emissions for each sub-application separately.. (Tier 2)

	Chaminal		Product Data for Application							
Chemical Consumption, Bank, or Emissions		Sub	-Appli	cation	1	Sub	-Appli	ication	2	Etc.
		Domestic Production	+ Imports - H		- Exports	Domestic + Imp Production		nports - Exports		
	Chemical 1									
ication	Chemical 2			_		ll (some may b				
or Appli	Chemical 3					cal and produ For blends,	ct			
l Data f	Blend A			_	separate data into individual chemical constituents. Determine if					
Chemical Data for Application	Blend B			chemical data includes that chemical used in blends or not.						
	Etc.							-		

2F: Sub-applications

	2F Product Uses as Substitutes for Ozone Depleting Substances					
2F1	Refrigeration and Air Conditioning					
	Domestic (i.e., household) refrigeration		PU Flexible Foam			
	Commercial refrigeration including different types of equipment, from		PU Flexible Moulded Foam			
	vending machines to centralised refrigeration systems in supermarkets					
	Industrial processes including chillers, cold storage, and industrial heat pumps used in the food, petrochemical and other industries		PU Integral Skin Foam			
	Transport refrigeration including equipment and systems used in		PU One Component Foam			
	refrigerated trucks, containers, reefers, and wagons					
	Mobile air-conditioning systems used in passenger cars, truck cabins,	2F3	Fire Protection			
	buses, and trains		Portable (streaming) equipment			
			Fixed (flooding) equipment			
2F2	Foam Blowing Agents	2F4	Aerosols			
	- Closed Foams		Metered Dose Inhalers (MDIs)			
	PU Continuous Panel		Personal Care Products (e.g., hair care, deodorant, shaving cream)			
	PU Discontinuous Panel		Household Products (e.g., air-fresheners, oven and fabric cleaners)			
	PU Appliance Foam		Industrial Products (e.g., special cleaning sprays such as those for operating electrical contact, lubricants, pipe-freezers)			
	PU Injected Foam		Other General Products (e.g., silly string, tyre inflators, klaxons).			
	PU Continuous Block	2F5	Solvents			
	PU Discontinuous Block		Precision Cleaning			
	PU Continuous Laminate		Electronics Cleaning			
	PU Spray Foam		Metal Cleaning			
	PU Pipe-in-Pipe		Deposition applications			
	Extruded Polystyrene	2F6	Other Applications			
	Phenolic Block					
	Phenolic Laminate	TOTAL: 32 sub-applications				

2F: Chemicals and blends

Chemical	Refrigeration	Fire Suppression	Aerosols		Solvent	Foam	Other
	and Air	and Explosion	Propellants	Solvents	Cleaning	Blowing	Applications
	Conditioning	Protection					
HFC-23	Х	Х					
HFC-32	Х						
HFC-125	Х	Х					
HFC-134a	Х	Х	Х			X	Х
HFC-143a	Х						
HFC-152a	Х		Х			Х	
HFC-227ea	Х	Х	Х			Х	Х
HFC-236fa	Х	Х					
HFC-245fa				Х		Х	
HFC-365mfc				Х	Х	Х	
HFC-43-10mee				Х	Х		
PFC-14 (CF4)		Х					
PFC-116 (C2F6)							Х
PFC-218 (C3F8)							
PFC-31-10 (C4F10)		Х					
PFC-51-14 (C6F14)					Х		
BLENDS							

Blend	Constituents	Composition (%)	
R-400	CFC-12/CFC-114	Should be specified ¹	
R-401A	HCFC-22/HFC-152a/HCFC-124	(53.0/13.0/34.0)	
R-401B	HCFC-22/HFC-152a/HCFC-124	(61.0/11.0/28.0)	
R-401C	HCFC-22/HFC-152a/HCFC-124	(33.0/15.0/52.0)	
R-402A	HFC-125/HC-290/HCFC-22	(60.0/2.0/38.0)	
R-402B	HFC-125/HC-290/HCFC-22	(38.0/2.0/60.0)	
R-403A	HC-290/HCFC-22/PFC-218	(5.0/75.0/20.0)	
R-403B	HC-290/HCFC-22/PFC-218	(5.0/56.0/39.0)	
R-404A	HFC-125/HFC-143a/HFC-134a	(44.0/52.0/4.0)	
R-405A	HCFC-22/ HFC-152a/ HCFC-142b/PFC-318	(45.0/7.0/5.5/42.5)	
R-406A	HCFC-22/HC-600a/HCFC-142b	(55.0/14.0/41.0)	
R-407A	HFC-32/HFC-125/HFC-134a	(20.0/40.0/40.0)	
R-407B	HFC-32/HFC-125/HFC-134a	(10.0/70.0/20.0)	
R-407C	HFC-32/HFC-125/HFC-134a	(23.0/25.0/52.0)	
R-407D	HFC-32/HFC-125/HFC-134a	(15.0/15.0/70.0)	
R-407E	HFC-32/HFC-125/HFC-134a	(25.0/15.0/60.0)	
R-408A	HFC-125/HFC-143a/HCFC-22	(7.0/46.0/47.0)	
R-409A	HCFC-22/HCFC-124/HCFC-142b	(60.0/25.0/15.0)	
R-409B	HCFC-22/HCFC-124/HCFC-1420 HCFC-22/HCFC-124/HCFC-142b	(65.0/25.0/10.0)	
R-410A	HFC-32/HFC-125	(50.0/50.0)	
R-410A R-410B	HFC-32/HFC-125	(45.0/55.0)	
R-410B R-411A	HC-1270/HCFC-22/HFC-152a	(1.5/87.5/11.0)	
R-411B	HC-1270/HCFC-22/HFC-152a	(3.0/94.0/3.0)	
R-411D R-411C	HC-1270/HCFC-22/HFC-152a	(3.0/95.5/1.5)	
R-412A	HCFC-22/PFC-218/HCFC-132a	(70.0/5.0/25.0)	
R-413A	PFC-218/HFC-134a/HC-600a	(9.0/88.0/3.0)	
R-414A	HCFC-22/HCFC-124/HC-600a/HCFC-142b	(51.0/28.5/4.0/16.5)	
R-414B	HCFC-22/HCFC-124/HC-600a/HCFC-142b	(50.0/39.0/1.5/9.5)	
R-415A	HCFC-22/HFC-152a	(82.0/18.0)	
R-415B	HCFC-22/HFC-152a	(25.0/75.0)	
R-416A	HFC-134a/HCFC-124/HC-600	(59.0/39.5/1.5)	
R-417A	HFC-125/HFC-134a/HC-600	(46.6/50.0/3.4)	
R-418A	HC-290/HCFC-22/HFC-152a	(1.5/96.0/2.5)	
R-419A	HFC-125/HFC-134a/HE-E170	(77.0/19.0/4.0)	
R-420A	HFC-134a/HCFC-142b	(88.0/12.0)	
R-421A	HFC-125/HFC-134a	(58.0/42.0)	
R-421B	HFC-125/HFC-134a	(85.0/15.0)	
R-422A	HFC-125/HFC-134a/HC-600a	(85.1/11.5/3.4)	
R-422B	HFC-125/HFC-134a/HC-600a	(55.0/42.0/3.0)	
R-422C	HFC-125/HFC-134a/HC-600a	(82.0/15.0/3.0)	
R-500	CFC-12/HFC-152a	(73.8/26.2)	
R-501	HCFC-22/CFC-12	(75.0/25.0)	
R-502	HCFC-22/CFC-115	(48.8/51.2)	
R-503	HFC-23/CFC-13	(40.1/59.9)	
R-504	HFC-32/CFC-115	(48.2/51.8)	
R-505	CFC-12/HCFC-31	(78.0/22.0)	
R-506	CFC-31/CFC-114	(55.1/44.9)	
R-507A	HFC-125/HFC-143a	(50.0/50.0)	
R-508A	HFC-23/PFC-116	(39.0/61.0)	
R-508B	HFC-23/PFC-116	(46.0/54.0)	
R-509A	HCFC-22/PFC-218	(44.0/56.0)	

2F: Blends

(18.022.0) (55.1/44.9) (50.0/50.0) (39.0/61.0) (46.0/54.0) (44.0/56.0) INTERGOVERNMENTAL PANEL ON Climate change

2F: Tiers / Approaches and Data

	Approach A (emission-factor approach)	Approach B (mass-balance approach)
Tier 2 (emission estimation at a disaggregated level)	 Data on chemical sales and usage pattern by sub-application Emission factors by sub-application 	 Data on chemical sales by sub- application Data on historic and current equipment sales adjusted for import/export by sub- application
Tier 1 (emission estimation at an aggregated level)	 Data on chemical sales by application Emission factors by application 	 Data on chemical sales by application Data on historic and current equipment sales adjusted for import/export by application

2F4 / 2F5: Solvents / Aerosols

For prompt emissions (solvents, aerosols):

GHG Emissions = St*EF + St-1*(1-EF)

S – quantity of chemical sales in current and previous year *t*, *t*-1

EF = 1 for two years (100%), default EF - 0.5/0.5

2F2: Foams Blowing Agents

• **Open foams** (GHG immediate release):

GHG Emissions = Mt

Mt - total HFC used in manufacturing new open-cell foam in year t, tonnes

• **<u>Closed foams</u>** (GHG delayed release):

GHG Emissions = Mt*EFFYL+ Bankt*EFAL + DLt - RDt

Mt - total HFC used in manufacturing new closed-cell foam in year t
 EF_{FYL} - first year loss emission factor
 Bankt - HFC charge blown into closed-cell foam manufacturing between year t and year t-n
 EF_{AL} - annual loss emission factor
 DLt - decommissioning losses or remaining losses of chemical at the end of
 RDt - HFC emissions prevented by recovery and destruction

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

2F2: Closed foams: Emission Factors

TABLE 7.7 DEFAULT EMISSION FACTORS FOR HFC-245fa/HFC-365mfc/HFC-227ea USES (FOAM SUB-APPLICATION)						
HFC-245a/HFC-365mfc Applications	Product Life in years	First Year Loss %	Annual Loss %	Maximum Potential End- of-Life Loss %		
Polyurethane – Continuous Panel	50	5	0.5	70		
Polyurethane – Discontinuous Panel	50	12	0.5	63		
Polyurethane – Appliance	15	4	0.25	92.25		
Polyurethane – Injected	15	10	0.5	82.5		
Polyurethane – Cont. Block	15	20	1	65		
Polyurethane – Disc. Block for pipe sections	15	45	0.75	43.75		
Polyurethane – Disc. Block for panels	50	15	0.5	60		
Polyurethane – Cont. Laminate / Boardstock	25	6	1	69		
Polyurethane – Spray	50	15	1.5	10		
Polyurethane – Pipe-in-Pipe	50	6	0.25	81.5		
Phenolic – Discontinuous Block	15	45	0.75	43.75		
Phenolic – Discontinuous Laminate	50	10	1	40		
Polyurethane – Integral Skin	12	95	2.5	0		
Source: Ashford and Jeffs (2004) assembled from U	NEP FTOC Reports ((UNEP-FTOC, 1999;	UNEP-FTOC, 200	3)		

2F1: Refrigeration/Air Conditioning

Tier 2b (Mass-Balance):

Emissions = Annual Sales of New Refrigerant – Total Charge of New Equipment+ + Original Total Charge of Retiring Equipment - Amount of Intentional Destruction

 in estimating Annual Sales of New Refrigerant, Total Charge of New Equipment, and Original Total Charge of Retiring Equipment, inventory compilers should account for imports and exports of both chemicals and equipment.

Tier 2a (Emission factor):

Emissions = Econtainers + Echarge + Elifetime + Eend-of-life

• Econtainers = RM* c/100

• Echarge = M * k/100

- Elifetime = B *x/100
- Eend-of-life = M * p/100 * (1- n/100)

EFs: c, k, x, p, n

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

2F1: Refrigeration/AC: Emission Factors

TABLE 7.9 Estimates ¹ for charge, lifetime and emission factors for refrigeration and air-conditioning systems								
Sub-application	Charge (kg)	Lifetimes (years) ²		Factors (% of arge/year) ³	2	End-of-Life Emission (%)		
Factor in Equation	(M)	(d)	(k)	(x)	$(\eta_{\mathrm{rec},d})$	(p)		
			Initial Emission	Operation Emission	Recovery Efficiency ⁴	Initial Charge Remaining		
Domestic Refrigeration	$0.05 \le M \le 0.5$	$12 \le d \le 20$	$0.2 \le k \le 1$	$0.1 \le x \le 0.5$	$\begin{array}{c} 0 < \eta_{\mathrm{rec},d} < \\ 70 \end{array}$	0 < p < 80		
Stand-alone Commercial Applications	0.2 ≤ M≤ 6	$10 \le d \le 15$	$0.5 \le k \le 3$	$1 \le x \le 15$	$0 < \eta_{rec,d} < 70$	0 < p < 80		
Medium & Large Commercial Refrigeration	50 ≤ M ≤ 2000	$7 \le d \le 15$	$0.5 \le k \le 3$	$10 \le x \le 35$	$\begin{array}{c} 0 < \eta_{\mathrm{rec},d} < \\ 70 \end{array}$	50 100		
Transport Refrigeration	$3 \le M \le 8$	$6 \le d \le 9$	$0.2 \le k \le 1$	$15 \le \mathbf{x} \le 50$	$\frac{0 < \eta_{\mathrm{rec},d} <}{70}$	0 < p < 50		
Industrial Refrigeration including Food Processing and Cold Storage	10 ≤ M ≤ 10,000	$15 \le d \le 30$	$0.5 \le k \le 3$	7 ≤ x ≤ 25	$0 < \eta_{rec,d} < 90$	50 100		
Chillers	10 ≤ M≤ 2000	$15 \le d \le 30$	$0.2 \le k \le 1$	$2 \le x \le 15$	$\begin{array}{c} 0 < \eta_{\mathrm{rec},d} < \\ 95 \end{array}$	80 100		
Residential and Commercial A/C, including Heat Pumps	0.5 ≤ M≤ 100	$10 \le d \le 20$	$0.2 \le k \le 1$	$1 \le x \le 10$	$0 < \eta_{rec,d} < 80$	0 < p < 80		
Mobile A/C	$0.5 \le M \le 1.5$	$9 \le d \le 16$	$\begin{array}{c} 0.2 \leq k \leq \\ 0.5 \end{array}$	$10 \le x \le 20^5$	$0 < \eta_{rec,d} < 50$	0 < p < 50		

INTERGOVERNMENTAL PANEL ON Climate change

ipcc

The IPCC Inventory Software enables you to estimate actual emissions even if you do not have historic data.

(!) But you need to have the data on:

- Year of introduction of chemical
- Domestic production of chemical in current year
- Imports of chemical in current year
- Exports of chemical in current year
- Growth rate of sales of equipment that uses the chemical

Tier 1 Refrigeration Argentina - HFC-143a

HFC-143a	
Current Year	2005
Use in current year - 2005 (tonnes)	Data Used Here
Production of HFC-143a	800
Imports in current Year	200
Exports in current year	0
Total new agent to domestic market	1000
Vear of Introduction of HEC-143a	1998

Tier 1 Defaults	
Assumed Equipment Lifetime (years)	15
Emission Factor from installed base	15%
% of HFC-143a destroyed at End-of-Life	0%

Growth Rate in New Equipment Sales

3.0%

In this hypothetical example, the production of a specific refrigerant (HFC-143a) are 800 tonnes with an additional 200 tonnes in imported equipment, in 2005 making a total consumption of 1 000 tonnes.

Based on the consumption pattern and knowledge of the year of introduction of the refrigerant (1998), it can be estimated that emissions will be 461 tonnes assuming the development of banks over the previous seven years.

The bank in 2005 is estimated at 3 071 tonnes.

Estimated data for earlier years	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
Production	0	0	81	167	259	355	458	566	680	800
Agent in Exports	0	0	0	0	0	0	0	0	0	0
Agent in Imports	0	0	20	42	65	89	114	141	170	200
Total New Agent in Domestic Equipment	0	0	102	209	323	444	572	707	850	1000
Agent in Retired Equipment	0	0	0	0	0	0	0	0	0	0
Destruction of agent in retired equipment	0	0	0	0	0	0	0	0	0	0
Release of agent from retired equipment	0	0	0	0	0	0	0	0	0	0
Bank	0	0	102	296	575	933	1365	1867	2437	3071
Emission	0	0	15	44	86	140	205	280	365	461

2G: Other Product Manufacture and Use

Code	Category	Code	Category
2G1	Electrical Equipment	2G2c	Other
2G1a	Manufacture	2G3	N ₂ O from Product Uses
2G1b	Use	2G3a	Medical Applications
2G1c	Disposal	2G3b	Propellant for Pressure
2G2	SF ₆ /PFCs from Other Uses	2G3c	Other
2G2a	Military Applications	2G4	Other
2G2b	Accelerators		

SF6 and PFCs: electrical equipment: gas insulated switchgear and substations (GIS), gas circuit breakers (GCB), high voltage gas-insulated lines (GIL), gas-insulated power transformers (GIT). Military equipment: ground and airborne radar, avionics, missile guidance systems, ECM (Electronic Counter Measures), sonar, amphibious assault vehicles, other surveillance aircraft, lasers, SDI (Strategic Defense Initiative), stealth aircraft. PFCs for cooling electric motors, e.g., in ships and submarines. Cosmetic and medical applications, research particle accelerators.

□ <u>N2O</u>: Medical applications, Auto-racing, Propellant in aerosol products

IPPU Data and Cross-Checks

	TABLE 1.2 TYPES OF USE AND EXAMPLES OF FUELS USED FOR NO	ON-ENERGY APPLICATIONS	
Type of use	Example of fuel types	Product/process	Chapter
Feedstock	natural gas, oils, coal	ammonia	3.2
	naphtha, natural gas, ethane, propane, butane, gas oil, fuel oils	methanol, olefins (ethylene, propylene), carbon black	3.9
Reductant	petroleum coke	carbides	3.6
	coal, petroleum coke	titanium dioxide	3.7
	metallurgical cokes, pulverised coal, natural gas	iron and steel (primary)	4.2
	metallurgical cokes	ferroalloys	4.3
	petroleum coke, pitch (anodes)	aluminium ¹	4.4
	metallurgical coke, coal	lead	4.6
	metallurgical coke, coal	zinc	4.7
Non-energy product	lubricants	lubricating properties	5.2
	paraffin waxes	misc. (e.g., candles, coating)	5.3
	bitumen (asphalt)	road paving and roofing	5.4
	white spirit ² , some aromatics	as solvent (paint, dry cleaning)	5.5
	ary steel production (in electric arc furnaces) (see Chapter 4.2 ral turpentine, petroleum spirits, industrial spirit ('SBP').	2).	1

Data and Cross-checks / QC

○ The CO₂ completeness check

○ Feedstock balance check

 Potential emissions approach for estimating HFCs, PFCs, or SF6

IPPU Data: Refrigeration/Air Conditioning

Where to get:

- $\circ~$ Regulation for phase-out of CFCs and HCFCs
- Government Statistics
- Refrigerant Manufacturers and Distributors
- Disposal Companies
- Import/Export Companies
- Manufacturer Association
- Marketing Studies

What to get:

- schedule of phase out for charging of brand new equipment and for servicing
- number of equipment disposed of for each type of application
- all virgin refrigerants sold for charging new equipment and for servicing in the different sectors
- equipment produced on a national level using HFC refrigerants (for all sub-applications)
- number of equipment using HFCs (imported and exported)
- HFC refrigerants recovered for re-processing or for destruction
- average equipment lifetime
- initial charge of systems

IPPU Data: Confidentiality

- Data providers might restrict access to information because it is confidential, unpublished, or not yet finalized
- Find solutions to overcome their concerns by:
 - explaining the intended use of the data
 - agreeing, in writing, to the level at which it will be made public
 - identifying the increased accuracy that can be gained through its use in inventories
 - offering cooperation to derive a mutually acceptable data sets
 - and/or giving credit/acknowledgement in the inventory to the data provided

Conclusion

> Diversity of sources and gases in the IPPU Sector

- Difficult to exhaustively include all sources & gases
- At least major sources & gases (key categories) must be included

> Care to Activity Data:

- Difficult to collect activity data (input/output data, plant-specific data)
- Data allocation and Double-counting
- Confidential data from private companies

Various opportunities for GHG abatement

- Capture and abatement at plants (N_2O destruction at nitric acid production plants)
- Recovery at the end of product's life and subject to either recycled or destroyed *(HFCs in refrigerators)*

Thank you for your time and attention! Any questions?

