Approach to Climate Change Research in the EU

David Warrilow

Head of Science Policy on Climate Change

Department for Environment, Food and Rural Affairs

SBSTA 24, Bonn

19 May 2006

EU Climate Change Research

- National Research Programmes
 Basic and applied both important
- Climate change related research under the EU's Framework Programme aims to understand, observe and predict climate change and its impacts
- Observational programmes
- Capacity building and international cooperation

Key EU research issues for policy

- Investigating dangerous levels of greenhouse gases, long term stabilisation goals and pathways
 - Global and regional risks associated with each stabilisation level
 - Economic, environmental and social costs and benefits associated with different pathways and levels
 - Technological options for different pathways and levels
- Approaches to adaptation
- Reducing uncertainty of prediction especially extremes (e.g. tropical storms)
- Non-climate impacts of CO2 e.g. in the ocean

How to avoid dangerous climate change?

- For different levels of climate change what are the key impacts, for different regions and sectors and for the world as a whole?
- What would such levels of climate change imply in terms of greenhouse gas stabilisation concentrations and emission pathways required to achieve such levels?
- What technological options are there for achieving stabilisation of greenhouse gases at different stabilisation concentrations in the atmosphere, taking into account costs and uncertainties?

Papers at www.stabilisation2005.com defre

How much is too much?

1-2 C Above pre-industrial	Major impacts on ecosystems and species; wide ranging impacts on society
1.5 C?	Greenland ice-cap starts to melt (7 m)
2-3 C	Major loss of coral reef ecosystem; considerable species loss; large impacts on agriculture; water resources; health; economies.
	General increase in droughts and extreme rainfalls as temperature increases. Up to 88cm sea level rise in next 100 years.
2-3 C	Terrestrial carbon sink becomes a source.
1-4 C?	North Atlantic circulation collapses
2-4.5 C ?	West Antarctic ice sheet collapses (5 m) defre

Food and Read Affect

Understanding stabilisation pathways; mitigation and adaptation

ssessing the technological options for chieving stabilisation of greenhouse gases

- Technical capabilities, costs, societal acceptability and use, applicability, investment, market penetration etc
 - Energy efficiency
 - Renewable sources wind, tidal, biomass, solar
 - Hydrogen
 - Nuclear
 - Carbon capture and storage

Adaptation Research Needs

- Climate and socio-economic scenarios
- Risk analysis frameworks
- Adaptation decision making frameworks
- Stakeholder engagement
- Impact model development
- Baseline data and analysis
- Indicators for adaptation
- Institutional capacity

EU Adaptation Research Projects

cCASH: Climate Change and Adaptation Strategies for Human Health

PRUDENCE/ENSEMBLES: Prediction of Regional scenarios and Uncertainties for Defining European Climate change risks and Effects

DINAS-COAST: Dynamic and Interactive Assessment of National, Regional and Global Vulnerability of Coastal Zones to Climate Change and Sea Level Rise

ATEAM : Advanced Terrestrial Ecosystem Analysis

ESPACE: European Spatial Planning, Adapting to Climate Change

CIRCLE: Climate Impact Research Coordination for a Larger Europe

ADAM : ADaptation And Mitigation Strategies, supporting European climate policy

Institutional issues

- Two way communication between scientists and policy-makers
- International collaboration
- Capacity building
- Communication of climate science issues to society

