New features in IPCC AR5 SBSTA Research Dialogue

Bonn, 8 June 2011 Renate Christ Secretary of the IPCC

Uncertainties and risks

Risk is function of probability and consequence

- Full range of consequences / probabilities
- Tails also important high impact events
- If outcome conditional evaluate all causes and effects, reconcile multiple evidence
- Framing has effect on how message is perceived – reciprocal statements
- If statements too general meaningless

Confidence in validity of a finding

expressed qualitatively (5 qualifiers) based on type, amount, quality and consistency of evidence, and degree of agreement

↑	High agreement Limited evidence	High agreement Medium evidence	High agreement Robust evidence	
greement	Medium agreement Limited evidence	Medium agreement Medium evidence	Medium agreement Robust evidence	
Ä	Low agreement Limited evidence	Low agreement Medium evidence	Low agreement Robust evidence	Confidence Scale

Evidence (type, amount, quality, consistency)

Likelihood

Quantified measures of uncertainty

Expressed probabilistically based on statistical analysis of observations, model results or expert judgment

Table 1. Likelihood Scale			
Term*	Likelihood of the Outcome		
Virtually certain	99-100% probability		
Very likely	90-100% probability		
Likely	66-100% probability		
About as likely as not	33 to 66% probability		
Unlikely	0-33% probability		
Very unlikely	0-10% probability		
Exceptionally unlikely	0-1% probability		

Detection and attribution

IPCC Fourth Assessment Report (AR4)

- Difficulties remain in reliably simulating and attributing observed temperature changes at smaller scales
- Anthropogenic warming over the last three decades has likely had a discernible influence at the global scale on observed changes in many physical and biological systems

IPCC Fifth Assessment Report (AR5)

- Coverage from global to regional, implications for projections
- Atmospheric and surface changes, changes in ocean properties, cryosphere, and extreme events
- Emphasis on impact-relevant changes in the climate system and impacts in natural and human systems.

Detection and Attribution related to Anthropogenic Climate Change Expert meeting, Geneva, September 2009

- Clarification of methods, definitions and terminology across WG I and II
- Guidelines for how to assess quality of studies
- Recommendations for good practice in detection and attribution studies
- Data requirements
- Criteria for assessing confidence
- Methods for handling confounding factors

Some new WG I features

- Clouds and Aerosols
- Near-term Climate Change: Projections
 and Predictability
- Long-term Climate Change: Projections, Commitments and Irreversibility
- End to end assessment of Sea Level Change – Kuala Lumpur Workshop

Carbon and Other Biogeochemical Cycles (CCT)

- Past changes, recent trends and projections
- Processes and understanding of changes, including ocean acidification
- Interactions between the carbon and other biogeochemical cycles, including nitrogen cycle
- Carbon cycle climate feedbacks and irreversibility
- Geo-engineering involving the carbon cycle

Ocean acidification

Workshop, January 2011, Okinawa, Japan

The changing chemistry of the oceans

Paleo, pre-industrial, current trends, future

Impacts of Ocean Acidification

- Calcification and dissolution of reef organisms
- Phytoplancton calcification and photosynthesis
- Non coral reef invertebrates, fish,
- Microbial processes and biochemistry

Scaling up from experiments to ecosystems Spatial and temporal scales, vulnerable regions Socioeconomic impacts and multiple stresses

Geo-engineering Expert Meeting (June 2011, Lima)

- Major uncertainties regarding effects on physical climate system, biogeochemical cycles, possible impacts on human and natural systems, effectiveness and costs as well as long term commitment
- Comprehensive risk assessment is lacking
- Understanding of physical science basis (WG I)
- Impacts on human and natural systems (WG II)
- Role within portfolio of response options, possible impacts and side effects and options for appropriate governance mechanisms (WG III)
- Current state of science and current activities
- Geoengineering options incl. solar radiation management and
- carbon dioxide removal
- Cross-cutting Issues: risk, time scales and governance

New elements in WG II and III

- Risk management and framing
- Multiple stress framing
- Iterative approach to assess climate protection goals: concepts, costs, technology portfolio,SD
- Expanded treatment of adaptation
- Integrated assessment of investment and finance issues
- Human well being, security, ethical concepts

Economic Analysis, Costing Methods, and Ethics Expert Meeting, Lima, Peru, June 2011

- Cross-cutting issues in economic analysis, costing methods, and ethics
- Valuation
- Decision making under uncertainty
- Distributional ethics and equity

Infrastructure & Human Settlements

Workshop, Kolkata, India, March 2011

Spatial Planning & Land-Use Change

• impacts, adaptation, mitigation

Urban planning and settlement forms

- Health, poverty alleviation, water, sanitation
- Waste management, "green cities"

Region – city interface

Transport and energy infrastructure Built environment

• Planning, managing, retrofitting

Policies, governance, incl.disaster preparedness

Better regional analysis

- Climate phenomena such as Monsoon, ElNino and their relevance for future regional climate change
- Atlas of global and regional climate projections
- WG 2 Part B regional aspects
- Chapters on oceans in WG I and II

