ICE CHANGES IN ANTARCTICA, THE HIMALAYAS AND OTHER MOUNTAIN GLACIER REGIONS

Georg Kaser (IACS, IMGI) and Ian Allison (IACS, ACE-CRC)

Rate of **change of the surface elevation** of the Antarctic Ice Sheet from satellite laser altimetry during the period 2003-2007 (Pritchard et al., 2009)

ANTARCTIC ESTIMATES FROM GRACE

MASS LOSS FROM FLUX ESTIMATES

ANTARCTIC ICE SHEET AND SEA LEVEL RISE

Copenhagen Diagnosis (2011)

0.5-0.6 mm SLE/yr (±40%)

CAUSES, AND FUTURE ANTARCTIC MASS LOSS

- a. The loss from Antarctica is occurring almost solely from **increased** ice discharge into the ocean.
- b. The cause is not well understood. One strong possibility is **thinning** of floating ice shelves from a warmer ocean, or changed ocean circulation, leading to acceleration of the grounded ice behind.
- c. Extensive **sub-glacial water** in the form of lakes and **active drainage systems** has recently been discovered under the ice sheet. The **impact** of these on ice sheet dynamics is **not clear**.
- d. Acceleration of the rate of loss from Antarctica over the next century is a strong possibility (e.g. Marine Ice Sheet instability). Accurate projections however cannot be made without better understanding of some of the dynamic processes.
- e. A number of major **IPY projects** addressed these problems, and will contribute substantially to improving ice sheet projections.

GLACIERS AND SEA LEVEL RISE

Copenhagen Diagnosis (2011)

- glaciers out of balance with present climate: ~18 cm SLR
- GL and AA ice sheets out of balance

SLR: 1 + m until 2100

.... and more meters to come in following centuries

VOLUME REDUCTION AND SEA-LEVEL EQUIVALENT (SLE) UNTIL 2100 FOR 16 REGIONS

- CCSM3
- UKMO-HadCM3
- ECHAM5/MPI-OM
- GFDL-CM2.0
- CSIRO-MK3.0
- **★** PCM
- **★** IPSL−CM4
- **★** GISS−ER
- **★** CNRM-CM3
- * CGCM3.1(T63)

Radić & Hock (2011)

HIMALAYA

Cogley, AnnGlac 52(59) (accepted)

GLACIER RUNOFF

Courtesy: Bayerische Akademie der Wissenschaften, Glaziologische Kommission

GLACIERS AND REGIONAL WATER AVAILABILITY

