

Agriculture Mitigation of Greenhouse Gases

Charles W. Rice
Soil Microbiologist
Department of Agronomy
Kansas State University

Consortium for Agricultural Soils Mitigation of Greenhouse Gases

K-State Research and Extension

Potential CO₂ Stabilization Options

Not Rapidly Deployable

Photovoltaics

Rapidly Deployable

generation

inor

Biomass co-fire electric

aldeira et al. 2004. A portfolio of carbon management options, p. 103-130,

ontributor D.2 PgC/y	 generation Cogeneration and Hydropower Natural Gas Combined cycle Niche options 	Ocean fertilization
ajor ontributor 0.2 PgC/y	 C sequestration in ag. soils Improved efficiency Industrial Non-CO₂ gas abatement Ag non-CO₂ gas abatement Reforestation 	 Biomass to hydrogen Biomass to fuel Cessation of deforestation Energy-efficient transport Geologic storage High efficiency coal technology Large-scale solar Next generation nuclear fission

Agricultural management plays a major role in greenhouse gas emissions and offers many opportunities for mitigation

- Cropland
 - Reduced tillage
 - Rotations
 - Cover crops
 - Fertility management
 - Erosion control
 - Irrigation management

Rice paddies

- Irrigation
- Chemical and organic fertilizer
- Plant residue management

Rice fields in The Philippines

Agroforestry

 Better management of trees and cropland

Agricultural Soil Carbon sequestration

Soil C Sequestration with conversion to No-tillage (MT C ha⁻¹ y⁻¹)

Site	Crop	MT C ha ⁻¹ y ⁻¹
Colorado & Kansas	Wheat	0.100 - 0.706
Kansas	Sorghum	0.088 - 0.605
Kansas, Michigan, Ohio	Maize	0.300 - 1.05
Kansas	Soybean	0.128
Brazil		0.51-1.84
Global		0.57
Kansas	Set Aside	0.800

Soil C sequestration potential of different US land Categories (% of 322 MMT C/yr) **

Anthropic Sources of Methane and Nitrous Oxide Globally

Total Impact 2.0 Pg C_{equiv}

1.2 Pg C_{equiv}

N Management to reduce N₂O flux

- Timing
 - Split applications
 - Delayed applications
 - Use nitrification inhibitors
- Placement
 - Banded
 - Injected
- Rate
 - Utilized N from organic matter efficiently
 - Soil, crop residue, cover crops

CH₄ capture

CH₄ emissions reduction from livestock

Measurement, Monitoring and Verification

Detecting soil C changes

- Difficult on short time scales
- Amount changing small compared to total C

Methods for detecting and projecting soil C changes (Post et al. 2001)

- Direct methods
 - Field measurements
- Indirect methods
 - Accounting
 - Stratified accounting
 - Remote sensing
 - Models

Sampling strategies: account for variable landscapes

Geo-reference microsites

Microsites reduces spatial variability

- Simple and inexpensive
- Used to improve models
- Used to adopt new technology

- Soil C changes detected in 3 yr
 - 0.71 Mg C ha-1 semiarid
 - 1.25 Mg C ha-1 subhumid

initial

subsequent

electromagneti

Ellert et al. (2001)

Examples of feasibility and pilot

projects on soil carbon sequestration			
Region	Land Use	Land management change	
Saskatchewan, Canada	Cropland	Direct seeding / cropping intensification	

		change
Saskatchewan, Canada	Cropland	Direct seeding / cropping intensification

intensification

annual crops /

Direct seeding

New grass plantings

Conservation tillage

Fruit tree intercrops with

Agriculture to grassland

Izaurralde (2004), Rice

No-till

1.09.011	Lana Coo	change
Saskatchewan, Canada	Cropland	Direct seeding / cropping intensification

1,09.011	Lana Goo	change
Saskatchewan, Canada		Direct seeding / cropping intensification
Pacific Northwest, USA	Cropland	Direct seeding / cropping

Cropland

Cropland

Cropland

Grass planting

secondary forest

Crop / natural fallow

Midwest

Oaxaca, Mexico

Pampas, Argentina

Kazakhstan

Iowa, Kansas, Nebraska

Areas of potential cooperation between countries **Changes in carbon** stocks at local, regional, and national scales Scaling up **Databases** Validation of - benchmark sites models -landscape studies - regional studies Model(s) Statistical and process -based **Up-Scaling** simulation models **Processes** Measurement. **Process studies** monitoring, Measurable SOC fractions verification of C SOC response to global change stocks Max SOC storage Depth distribution of SOC and turnover Estimates of C inputs

Non-CO₂ flux

K-State Research and Extension

Charles W. Rice
Kansas State University
Manhattan KS 66506 USA

cwrice@ksu.edu 785-532-7217