

Biomass Power Plant Vienna

SBSTA 26

Klaus Radunsky

Background/Timetable

- 2001: cooperation of socialist and green parties: agreement to build a biomass power plant
- May 2001: feasibility study
- Aug. 2002: law on power production based on renewable energy sources → feed-in tariffs
- May 2003: foundation of operating company
 - Shareholders: WienStrom GmbH
 Fernwärme Wien GmbH
 ÖBf Beteiligungs GmbH
- Jan. 2005: start of construction
- Jan. 2006: start of commissioning
- Oct. 2006: start of regular operation

Costs/Location

- investment costs: 52 mio. €
 - 20 % higher than planned! mainly due to rising steel prices
- federal subsidies
- location: Simmering, Vienna
 - possibility to deliver heat and power
 - 2 fossil fuel fired power plants on site → shared infrastructure
 - possible connection to railway
 - fuel preparation nearby chipping place at port Albern

Fuel

- wood biomass: mainly round timber, some waste wood fractions – chipped near site (bulk <10 cm)
- consumption: $\sim 195.000 \text{ t/a} = \text{wood chips:}$ $\sim 600.000 \text{ m}^3/\text{a} = \sim 520.000 \text{ MWh/a}$
- moisture content: 30-50 %
- providers: federal Austrian forest holding (ÖBf = shareholder), private forest enterprises
- delivery:
 - from within a radius of 100 km
 - originally intended: railway (mainly), truck, ship
 - realized: only by truck!

Engineering

Engineering

- fuel bunker
- separator: metals, larger chip sizes (>25 cm)
- fuel silo (7.500 m³)
- circulating fluidised bed incinerator
- flue gas cleaning:
 - primary measures for NO_x reduction
 - SCR addition of NH₃
 - bag filter addition of lime hydrate
 - addition of activated coke on demand
- live steam: 520 °C, 120 bar!
- extraction condensing turbine → heat (only in winter!) and power

Planned Data

nominal capacity: 65,7 MW

winter summer

15,1 MW 24,5 MW power output:

heat output: 37,0 MW 0 MW

79 % 36 % max. efficiency:

power production: ~160.000 MWh/a

heat production: ~95.000 MWh/a

no heat decoupling during summer

→ annual fuel use efficiency: <50 %!

Heat Production

- heat demand in summer produced by waste incineration plants
- no additional heat demand in summer
- → only 2.500 h/a operated as CHP
- → 5.500 h/a only power production
- → low efficiency as CHP!

Emission Limits

Pollutant	Half Hour Average	Daily Average
SO ₂	50	
NO_x	100 (!)	100
СО	100	50
VOC	20	10
HCI	10	
HF	1	
NH ₃	10 ¹⁾	10 ¹⁾
Dust	10 (!)	10
PCDD/F	0,1 ²⁾	

- all values in mg/Nm 3 , dry gas, 13 % O $_2$ $^{1)}$ mg/Nm 3 , dry gas, 0 % O $_2$
- $^{2)}$ ng TEQ/Nm³, dry gas, 13 % O_2
- very effective flue gas cleaning
 - → low emissions into air! permit according to waste incineration ordinance 12.05.2007 Folie 10

Summary

positive aspects:

- renewable energy
- effective flue gas cleaning → low emissions into air
- regional added value

negative aspects:

- only partially operated as CHP (2.500 out of 8.000 h/a)
 - \rightarrow low fuel use (<50 %)
 - → could deliver 3 times more district heat
- delivery by truck → emissions (pollutants, noise,...)
- high costs (investment costs, operating costs)
- high moisture content (avg. 40 %)

Conclusions

criteria for biomass power plants:

- high efficiency:
 - especially for large plants
 - designed AND operated as CHP
- effective flue gas cleaning
 - dust
 - NO_x
- disposal of fly ash and bed ash
- fuel transport
 - low distance
 - delivery by train

