German-Malaysian Project:
Approaches for Reduction of Air Pollutants, Sustainable
Urban Traffic Systems
- Kuala Lumpur as a case -

Rudolf Petersen, Germany
UNFCCC SBSTA 26, Bonn May 11, 2007
Urban Planning and Development, Transportation
How to learn from 50 years of tradition in urban traffic congestion and air pollution?
Pollution Control Lesson Learnt in the US: Clean Technology is not enough

- More than 30 years of emission reduction by tightened standards in U.S. do not guarantee healthy ambient air
- Increasing car traffic and travel distances result from
 - unreasonable land-use
 - poor public transport
 - low gas prices
 - loss of urban livability
Integrated Clean Air Strategy in Transport

Experiences can be applied to ghg reduction

<table>
<thead>
<tr>
<th>Control of Vehicle-km</th>
<th>Control of Emissions per Vehicle-km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban Transport Planning</td>
<td>Inspection & Maintenance Program</td>
</tr>
<tr>
<td>Priority for Public Transport Investment</td>
<td>Standards for New Vehicles</td>
</tr>
<tr>
<td>High-Density Development</td>
<td>Fuel Standards</td>
</tr>
<tr>
<td>Mixed-Use Development</td>
<td>High-Use Fleet Improvement Programs</td>
</tr>
<tr>
<td>ABC / Key-Site Development</td>
<td>Tax Incentives for Clean Vehicles/Fuels</td>
</tr>
<tr>
<td>Road Pricing, Fuel Taxes</td>
<td>Education of Drivers, Law Enforcement</td>
</tr>
</tbody>
</table>
Traffic Spiral

- Feedback system between
 - road construction,
 - sub-urbanisation
 - vehicle increase
- Results are
 - Fuel consumption
 - Air pollution
 - More congestion
- Int’l experience: Not sustainable
A Problem: Ring Roads

- Ring /circular roads initiate sub-urban development
- Relocation of businesses, housing
- Lower density of land-uses
- Car-oriented, higher distances

Bonn May 11, 2007
100 Years of Sub-Urbanisation

Typical Urban Region 1900

Typical Urban Region 2000
Vision: Turn Back Sub-Urbanisation

Typical Urban Region 2000 - Typical Urban Region 2100 ?

Bonn May 11, 2007

Petersen

8
Kuala Lumpur - Putrajaya: How can sustainability mobility be supported (= car dependency be reduced)

- Control new investments
- Classify areas according to transport access
- Example e.o. Dutch ABC Concept)
 - A: Locations around train / bus station (shopping centers, large office buildings etc.)
 - B: Good/average accessibility by PT (housing, work places, leisure facilities)
 - C: Outside near highway ramps (facilities with low numbers of visitors)
- Coordinate local/regional planning
KL: Why the car and not p.t.

- Rational reasons mentioned: Travel time and access
- Not mentioned: Differences between various buses types / rapid rail
- Not mentioned: Social status
- Public participation needed

Table 1: Factors that encourage the use of the car

<table>
<thead>
<tr>
<th>No.</th>
<th>Statement</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Less Travel time</td>
<td>44.1</td>
</tr>
<tr>
<td>2</td>
<td>Desirable Routes not covered by public transport</td>
<td>33.8</td>
</tr>
<tr>
<td>3</td>
<td>Comfortable</td>
<td>2.5</td>
</tr>
<tr>
<td>4</td>
<td>If its save</td>
<td>2.0</td>
</tr>
<tr>
<td>5</td>
<td>Infrequent public transport services</td>
<td>17.6</td>
</tr>
</tbody>
</table>

Table 2: Factors Discouraging car users from using public transport

<table>
<thead>
<tr>
<th>No.</th>
<th>Statement</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>High risk to road accident involving</td>
<td>17.0</td>
</tr>
<tr>
<td>2</td>
<td>High traffic congestion and delay</td>
<td>36.6</td>
</tr>
<tr>
<td>3</td>
<td>It is not cheap and no cost saving (fuel and tool)</td>
<td>14.4</td>
</tr>
<tr>
<td>4</td>
<td>It is no economical to maintain</td>
<td>10.9</td>
</tr>
<tr>
<td>5</td>
<td>Parking and maneuver problem</td>
<td>23.7</td>
</tr>
</tbody>
</table>

Table 3: Likelihood of car users switching to public transport.

<table>
<thead>
<tr>
<th>No</th>
<th>Statement</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vehicles usually arrive on schedule</td>
<td>37.2</td>
</tr>
<tr>
<td>2</td>
<td>Fare is low</td>
<td>28.0</td>
</tr>
<tr>
<td>3</td>
<td>Vehicles are not too crowded</td>
<td>3.2</td>
</tr>
<tr>
<td>4</td>
<td>Vehicles are clean</td>
<td>2.0</td>
</tr>
<tr>
<td>5</td>
<td>The route is more accessible</td>
<td>29.6</td>
</tr>
</tbody>
</table>

Source: Kamba/Rahmat/Ismail Journal of Social Sciences 2007
What are the options?

Bus rapid transit

Light Rail Transit

Underground metro

Urban rail
KL: Public transit competing with private car use - Importance of system integration and land-use planning

- Strong co-ordination between pt services
- Joint tariffs between transit operators
- Urban development supporting p.t.
Land-use and transport closely related
Integrated concepts needed to reduce transport emissions

Urban Land-Use
- Mixed-use areas
- No disperse settlements
- Population density
- City center residents
- Urban architecture to attract walking
- High-use locations transit-orientated

Urban Transport System
- Balanced use of road area
- Priority for public transport and for NMT
- Transport management for sustainability goals
- Time losses for PT travelers are cost.
- All travels have to be paid by the traveler.
Thank you.

rudolf.petersen@rudolf-m-petersen.de
rudolf.petersen@wupperinst.org
See also: www.gtz.de and www.wupperinst.org