Climate Change 2013: The Physical Science Basis Working Group I contribution to the IPCC Fifth Assessment Report

Insights from the WGI Perspective

Jan Fuglestvedt

Lead Author, Chapter 8 WGI, Contributing Author WGIII CWT Synthesis Report

SBSTA-IPCC special event on Common metrics to calculate the carbon dioxide equivalence of greenhouse gases, Bonn, 7 June 2014

IPCC AR5 Working Group I Climate Change 2013: The Physical Science Basis

© Yann Arthus-Bertrand / Altitude

From Summary for Policymakers

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

IPCC AR5 Working Group I Climate Change 2013: The Physical Science Basis

From Summary for Policymakers

The most appropriate metric and time horizon will depend on which aspects of climate change are considered most important to a particular application.

From Summary for Policymakers

The most appropriate metric and time horizon will depend on which aspects of climate change are considered most important to a particular application.

No single metric can accurately compare all consequences of different emissions, and all have limitations and uncertainties.

Key Messages on metrics:

Metrics do not define policies or goals

.... but facilitate evaluation and implementation of multi-gas policies to meet particular goals

All choices of metric contain implicit value-related judgements

The Global Warming Potential (GWP) and Global Temperature change Potential (GTP) have limitations, and there are inconsistencies related to indirect effects and feedbacks

GWP is not directly related to a temperature limit (e.g., 2°C target)

No single metric for all applications

Many applications:

- Climate agreements
- Emission trading
- Climate policy assessments
- Trade-offs in policy making
- Design and operation (e.g. aircraft)
- Information about properties of components and uncertainties
- Scientific studies

Many applications:

- **Climate agreements**
- **Emission trading**
- Climate policy assessments
- Trade-offs in policy making
- Design and operation (e.g. aircraft)
- Information about **properties** of components and uncertainties
- Scientific studies

Synthetic SO2 Waste/landfil CO Biomass burning VOC NOx Agr. Waste burning N20 Agriculture CH4 Animal Husbandry CO2 Household fossil fuel Shipping Off-road land On-road Aviation Industry Power -2 0 6 2 4 8 10 $\Delta T (mK)$ NO_v emissions 150 GTP₂₀ 100 50 Ozone 0 Meth -50 Nitrate Sulph Collins et al., 2010 S. H₂O -100 N depn

 $\Delta T(50 \text{ years})$ for pulse emissions from the World

What is new since AR4?

No recommendation for metric choice is given in AR5

Uncertainties emphasized and better quantified

Point to inconsistent treatment of indirect effects / feedbacks

Point to implicit value-based judgments

Assessed alternatives to GWP

Updated values of both GWP and GTP for > 200 compounds

IPCC AR5 Working Group I Climate Change 2013: The Physical Science Basis

Statement on GWP in IPCC AR4

Although it has several known shortcomings, a multi-gas strategy using GWPs is very likely to have advantages over a CO₂-only strategy (O'Neill, 2003). Thus, GWPs remain the recommended metric to compare future climate impacts of emissions of long-lived climate gases.

INTERGOVERNMENTAL PANEL ON CLIMPTE CHARGE

CLIMATE CHANGE 2013

The Physical Science Basis

WORKING GROUP I CONTRIBUTION TO THE FIFTH ASSESSMENT REPORT OF THE INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

(a)

... provides an assessment that focuses on the scientific aspects and utility of emission metrics. Extending such an assessment to include more policy-oriented aspects of their performance and usage such as simplicity, transparency, continuity, economic implications of usage of one metric over another, etc., is not given here as this is beyond the scope of WGI. However, consideration of such aspects is vital for user assessments.

Years after emission

13

Integrated up to chosen time horizons (H)

Integrated up to chosen time horizons (H)

Integrated up to chosen time horizons (H)

GWP has a strong and «artificial» memory.

Often misunderstood; no climate response included.

Time horizon

IPCC 1990 presented three time-horizons (20, 100 and 500 yr)

Kyoto Protocol: 100 years

SAR	GWP ₂₀	GWP ₁₀₀	GWP ₅₀₀
CH ₄	56	21	6.5

IPCC AR5 Working Group I Climate Change 2013: The Physical Science Basis

WMO

UNEP

IPCC AR5 Working Group I Climate Change 2013: The Physical Science Basis

IPCC AR5 Working Group I Climate Change 2013: The Physical Science Basis

Choice of climate impact

Radiative Forcing (RF)

→ strong memory (often misunderstood; no climate response included)

Application of (A)GTP – an example

Myhre et al., 2013, AR5

Metric table from AR5

HCF

trifl

> 200 gases

Radiative AGWP	AGWP										
Acronym, Common Name or Chemi- cal NameChemical FormulaLifetime (Years)Efficiency (W m ⁻²)20-year 20-yearGWPVolumeFormula(Years)(W m ⁻²)(W m ⁻²)Years)20-yearvolumevolumeyr kg ⁻¹)yr kg ⁻¹)yr kg ⁻¹ Year	100-year (W m ⁻² yr kg ⁻¹)	GWP 100-year	AGTP 20-year (K kg ⁻¹)	GTP 20-year	AGTP 50-year (K kg ⁻¹)	GTP 50-year	AGTP 100-year (K kg ⁻¹)	GTP 100-year			
Carbon dioxide CO2 see* 1.37e-5 2.49e-14 1	9.17e-14	1	6.84e-16	1	6.17e-16	1	5.47e-16	1			
Methane CH ₄ 12.4 ⁺ 3.63e-4 2.09e-12 84	2.61e-12	28	4.62e-14	67	8.69e-15	14	2.34e-15	4			
Fossil methane‡ CH ₄ 12.4 [†] 3.63e-4 2.11e-12 85	2.73e-12	30	4.68e-14	68	9.55e-15	15	3.11e-15	6			
Nitrous Oxide N2O 121 ⁺ 3.00e-3 6.58e-12 264	2.43e-11	265	1.89e-13	277	1.74e-13	282	1.28e-13	234			
Chlorofluorocarbons											
CFC-11 CCl ₃ F 45.0 0.26 1.72e-10 6900	4.28e-10	4660	4.71e-12	6890	3.01e-12	4890	1.28e-12	2340			
CFC-12 CCl ₂ F ₂ 100.0 0.32 2.69e-10 10,800	9.39e-10	10,200	7.71e-12	11,300	6.75e-12	11,000	4.62e-12	8450			

In previous reports: 20, 100 and 500 years.

Values for 500 years not presented in AR5 Long-term effects addressed in other ways

HCFC-123a	CHCIFCF ₂ CI	4.0	0.23	3.37e-11	1350	3.39e-11	370	4.51e-13	659	4.44e-14	72	2.81e-14	51
HCFC-124	CHCIFCF ₃	5.9	0.20	4.67e-11	1870	4.83e-11	527	7.63e-13	1120	7.46e-14	121	4.03e-14	74
HCFC-132c	CH ₂ FCFCI ₂	4.3	0.17	3.07e-11	1230	3.10e-11	338	4.27e-13	624	4.14e-14	67	2.58e-14	47
HCFC-141b	CH ₃ CCl ₂ F	9.2	0.16	6.36e-11	2550	7.17e-11	782	1.27e-12	1850	1.67e-13	271	6.09e-14	111
HCFC-142b	CH ₃ CCIF ₂	17.2	0.19	1.25e-10	5020	1.82e-10	1980	3.01e-12	4390	8.46e-13	1370	1.95e-13	356

We also give AGWP and AGTP to separate out changes due to reference gas CO₂

Changes in GWP₁₀₀ values since AR4

CH₄: 25 **→ 28**

N₂O: 298 **→265**

SF₆: 22 800→ **23 500**

HFC143a: 4470 → **4800**

HFC245fa: 1030 → 858

WHY HAVE THEY CHANGED?

IPCC AR5 Working Group I Climate Change 2013: The Physical Science Basis

The reference gas: CO₂

Why has the GWP for methane changed since AR4?

$$GWP_{100} = \frac{AGWP_{CH4}}{AGWP_{CO2}} =$$

IPCC AR5 Working Group I Climate Change 2013: The Physical Science Basis

Why has the GWP for methane changed since AR4?

Factors affecting the metric values

User related choices

- Impact (RF, ΔT, ...)
- Time horizon
- Discount rate
- Global vs regional
- Inclusion of indirect effects/feedbacks?
- Background conditions

Scientific uncertainties

- Radiative efficency (Wm⁻²/kg)
- Lifetime of non-CO₂ components
- Impulse response function for CO₂
- Climate sensitivity and impulse response function for ΔT

For a change in time horizon from 20 to 100 years for CH₄:

GWP: $84 \rightarrow 28$ GTP: $67 \rightarrow 4$ Effects of scientific uncertainties (5 to 95% uncertainty range)

CH₄: GWP₂₀: ±30% GWP₁₀₀: ±40%

The uncertainty is dominated by CO_2 and indirect effects.

For gases with lifetimes of a **few decades:** in the order of $\pm 25\%$ and $\pm 35\%$ for 20 and 100 years.

For gases with lifetimes of a **century or more**: order of $\pm 20\%$ and $\pm 30\%$ for 20- and 100-year horizons.

Are the uncertainties in GTP larger than for GWP? GTP for CH_4 : $\pm 75\%$

IPCC AR5 Working Group I Climate Change 2013: The Physical Science Basis

Implict value judgements in metrics

Weighting of effects over time

Implict value judgements in metrics

Weighting of effects over time

Limitation: Inconsistent treatment of climate-carbon feedbacks

Previously: Included for CO₂ but not for non-CO₂ components

Limitation: Inconsistent treatment of climate-carbon feedbacks

Previously: Included for CO₂ but not for non-CO₂ components

AR5 includes this tentatively:

- **CH₄:** $\text{GWP}_{100} = 28 \rightarrow 34$ $\text{GTP}_{100} = 4 \rightarrow 11$
- **N₂O:** GWP₁₀₀ = 265 → 298 GTP₁₀₀ = 234 → 297

... review and assess the metrics for SLCF – give overviews of metric values in the literature – we do not «adopt» or recommend these values

Table 8.A.3 | GWP and GTP for NO_x from surface sources for time horizons of 20 and 100 years from the literature. All values are on a per kilogram of nitrogen basis. Uncertainty for numbers from Fry et al. (2012) and Collins et al. (2013) refer to $1-\sigma$. For the reference gas CO₂, RE and IRF from AR4 are used in the calculations. The GWP₁₀₀ and GTP₁₀₀ values can be scaled by 0.94 and 0.92, respectively, to account for updated values for the reference gas CO₂. For 20 years the changes are negligible.

		GWP				GTP							
			H = 20	H = 100			H = 20		H = 100				
NO _x East Asiaª	D _x East Asia ^a 6.4 (±38.1)			-5.3	-55.6 (±23.8)			-1.3 (±2.1)					
NO _x EU + I				G					GTP				
NO _x North			H	= 20	H = 100		H = 20		H = 100				
NO _x South	Asiaa			+1 7) 1 8 (+0									
Mid-latituc CO EU -	- N				GWP								
Tropical NCCO Nort	<mark>h /</mark>			H	H = 100			H = 20)		
NO _x global		Asiaª		16.3	(±6.4)			5.0 (±2.1)			8.4 (±4.6)		
NO _x globalCO glob	al ^t VOC EU												
	VOC Nor				GV			NP					
CO glob	VOC Sou)	H = 10		00		
	VOC fou	BC to	BC total, global ^c				3200 (270 to 6200)			900 (100 to 1700)			
	VOC glo	BC (four regions) ^d					1200 ± 720			345 ± 207			
		BC gl	lobalª				1600		460				
BC aerosol–rad			erosol-radiation interaction +albedo, global ^b			2900 ± 1500		830 ± 440					
IPCC AR5 Working Group I Climate Change 2013: The						-240			-69				
chinate chang	C 2013, 11C	OC g	lobal♭				–160 (–60 to	-320)		l6 (–18 to	o —19)		

Global emissions weighted by GWP and GTP for different horizons

IPCC AR5 Working Group I Climate Change 2013: The Physical Science Basis INTERGOVERNMENTAL PANEL ON Climate change

Assessment of metrics for policy making

SUMMARY

- Metrics do not define policies or goals; facilitate implementation of multi-gas policies to meet particular goals
- GTP and GWP fundamentally different
- No single metric for all applications
- AR5: No clear recommendation as in AR4
- Choices of metric contain implicit value-related judgements
- GWP not directly related to a temperature target
- The GWP and GTP have limitations; inconsistent treatment of indirect effects and feedbacks
- There are alternatives to the current implementation of the multi-gas policies (multi-basket; gas-by-gas)