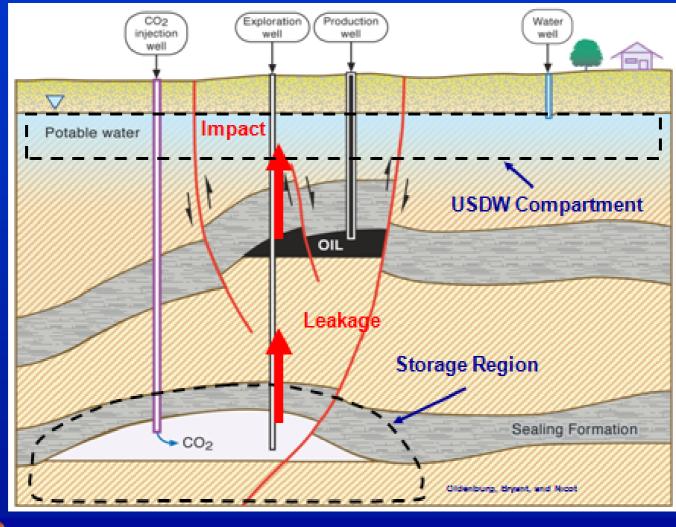
UNFCCC Subsidiary Body for Scientific and Technological Advice 7-8 September, 2011 Abu Dhabi, United Arab Emirates

Groundwater Protection Groundwater Protection

Katherine Romanak Gulf Coast Carbon Center/STORE Bureau of Economic Geology The University of Texas at Austin

Bureau of Economic Geology

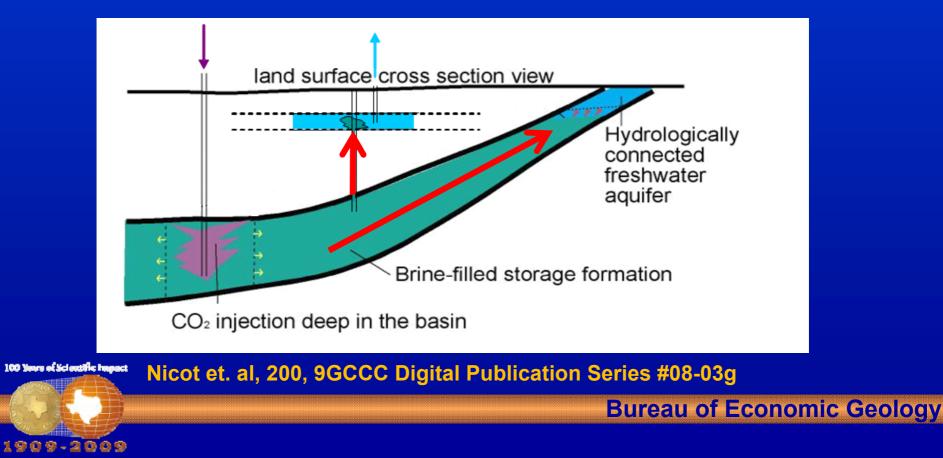
100 Yours of Scientific Impact


1909.2

Groundwater Protection

- Begins in the initial planning phase
 - Site characterization
 - Assess risks to groundwater
 - Criteria for choice of sites
 - Project engineering and management with regard to potential migration pathways
 - CO₂
 - Brine

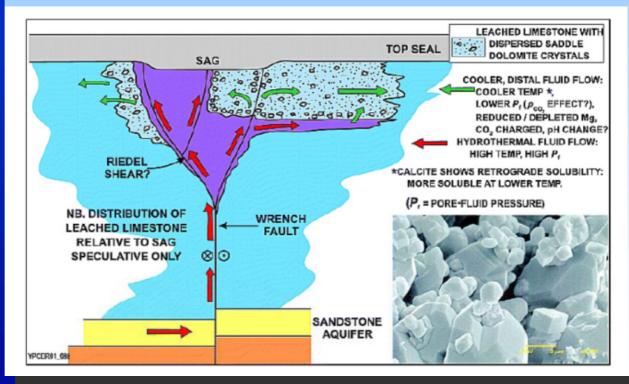
Potential CO₂ Migration Pathways



1909-2009

100 Years of Scientific has

Brine Migration Pathways


- Brine leakage through faults/wells to the shallow subsurface
- Along-dip water displacement

Migration Potential

- Correct environments trap CO₂
- Faults are most-likely avenues of transport out of traps.
- Faults can self heal
- Faults don't always reach the surface

After Breach of Sandstone Aquifer Seal Hydrothermal Fluids spread out Below Secondary Top Seal Lose Energy and Heat and often, System Self-Heals

Work by Dave Bowen, http://ieaghg.org/docs/General_Docs/Natr%20rel%20worksop/BOWEN_SEC.pdf

Bureau of Economic Geology

100 Years of Scientific Impact

Industrial Analog: SACROC Oilfield

40 years 150 Mt CO₂ injected 75 Mt recovered and recycled Balance is likely sequestered

100 Yours of Scientific Impact

Science Addressing Concerns

- Controlled Releases/Injections
 - Deep Pilot Injection Projects
 - Shallow Controlled Releases
- Natural Analogs
- Industrial Analogs
- Laboratory Simulations
- Numerical Modeling



Bureau of Economic Geology

1909.2

Potential Impacts of Concern

 \mathbf{CO}_2

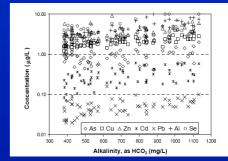
- pH decrease
- Mobilization of heavy metals
 - Mineral dissolution
 - Detachment of metals from grain surfaces

Brine

Organics, injection impurities, total dissolved solids

100 Yours of Scientific Impact

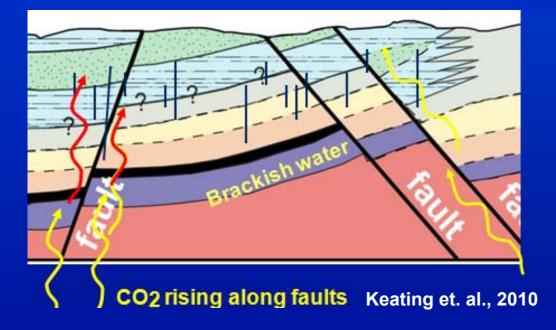
Evaluating Metal Mobilization


Laboratory:

Rapid trace metal mobilization followed by decline. (Lu et. Al, 2009)

<u>Shallow Controlled Release (ZERT)</u>

 Metals mobilized but were below drinking water standards and transient (Kharaka, 2010).


Natural Analogs (Mammoth Mt., Vesuvius)

Metals not present in some high CO₂ environments. Some indication that metals are absorbed by mineral precipitation. (Stephens and Hering, 2004; Aiuppa et al., 1995)

100 Years of Scientific Impact

Brine Impacts: Natural Analog Chimayo, New Mexico, USA

 Integrated field, lab and modeling.

•Trace elements are strongly associated with brackish water; in-situ mobilization is negligible

 Mineral precipitation decreases metal concentrations

100 Years of Scientific hapact

Brine Migration

Impacts are related to basin size and geometry

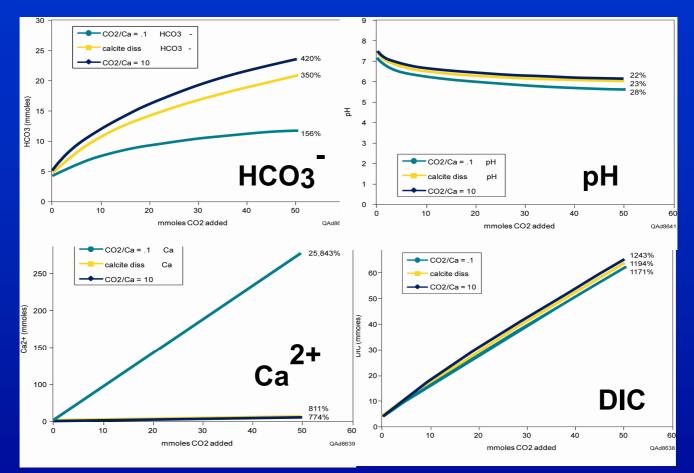
Flow barriers could locally focus displaced water and provoke undesirable effects (migration up well bores/faults).

Abandoned wells should be properly plugged.

Injection pressure management may be necessary in some instances.

Carrizo-Wilcox system

Nicot et. al, 2008



Groundwater Monitoring

- Not all research tools should be implemented for industry.
- Targeted in area and scope to reduce cost without reducing effectiveness.
 - Wells and faults
 - Selected parameters
- Main cost issue is geologic variability.
 Sensitive parameters that behave similarly in any geologic environment.

Sensitivity of Groundwater Chemistry to CO₂

Romanak et. al., in review, International Journal of Greenhouse Gas Control

100 Yours of Scientific Impact

Natural Analogs for Public Perception

IEAGHG Workshop on Natural Releases of CO₂ Building Knowledge for CO2 Storage Environmental Impact Assessments Maria Laach, Germany, November 2-4, 2010

When used correctly, natural CO_2 releases provide a level of clarity for the public by giving tangible concrete examples of environmental impacts of CO_2 .

Dixon and Romanak, 2010, 2011

100 Yours of Scientific Impact

Concluding Remarks

- Field tests, analog observations, laboratory experiments, and modeling increase confidence that CO₂ injected into geological formations can be permanently stored at depths below and isolated from underground sources of drinking water.
- CO₂ in aquifers is not problematic for groundwater quality.
- Brine displacement is not excessive and can be managed, especially in large basins.
- Monitoring can be targeted to potential migration pathways and should use global geochemical parameters that react the same in any environment.
- Natural releases of CO₂ can be used for communicating environmental impacts to the public.

Contact Information

Katherine Romanak Gulf Coast Carbon Center Bureau of Economic Geology The University of Texas at Austin

katherine.romanak@beg.utexas.edu

http://www.beg.utexas.edu/gccc/

100 Yours of Scientific Impact

