





**Australian Government** 

Department of Resources, Energy and Tourism

Geoscience Australia

# SITE SELECTION - GORGON CARBON DIOXIDE INJECTION PROJECT

Greg Leamon
Geoscience Australia



# **Gorgon Project**



#### **Joint Venture Participants**

- Chevron (~47%) operator
- ExxonMobil (25%)
- Shell (25%)
- Osaka Gas (1.25%)
- Tokyo Gas (1%)
- Chubu Electric Power (0.417%)



#### **Gorgon Project**

- Australia's largest single resource project
- Estimated project cost A\$43 billion (2009)
- Gas resource 40 Tcf methane
- Project comprises multiple gas fields 90-160
   km offshore in water depths 220m to 1300m
- Additional fields are being evaluated
- CO2 will be produced with methane
- Gorgon (14%) Jansz (<1.0%)</li>
- LNG production requires removal of all CO2
- LNG facilities located on Barrow Island
- LNG exported to international markets
- Construction is underway
- First gas scheduled for 2014
- CO2 injection to start after first gas



# **Gorgon Carbon Dioxide Injection Project**



- The first project in Australia to significantly reduce emissions by the underground injection of CO2
- Gorgon Project emissions are expected to be reduced by approximately 40%
- Injection will be between 3.4 and 4.0 million tonnes of reservoir CO2 per year or more than 100 million tonnes over the life of the project
- Site appraisal cost \$150 to \$200 million
- Project capital cost will be around \$2 billion
- Number of possible world firsts including –
- ✓ First greenhouse gas storage legislation Barrow Island Act 2003 (WA)
- ✓ First CO2 project to undergo detailed environmental impact assessment (including public review and comment)





# **Project history**



- 1980 Gorgon Gas Field discovered
- 1992 Discussion started about use of geologic disposal as a way of managing reservoir CO<sub>2</sub>
- 1996 Series of studies commissioned to consider ways of addressing greenhouse gas emissions
  - Various ocean disposal techniques e.g. deep, aqueous solution and dry ice
  - Storage in soil
  - Disposal into deep aguifers
  - Disposal into depleted oil and gas reservoirs
  - Use of microalgae for CO<sub>2</sub> remediation
  - Terrestrial storage of CO<sub>2</sub> as a solid in a thermally insulated repository
  - Forestation offsets
  - Commercial use of CO<sub>3</sub>
- 1998 Joint Venture held workshop to consider options for the disposal of reservoir CO<sub>2</sub>
  - Geological disposal was deemed the most credible
- 1998 to 2002
  - Work focused on assessing potential storage sites within 300km of Gorgon Field



## Site Screening and selection



## Four criteria considered for site screening and selection –

- 1. Containment risk e.g. security of top seal, distance to faults, number / condition of existing well penetrations
- 2. Storage capacity e.g. gross rock volume, regional structure capacity, reservoir architecture, extent of connected aquifers
- 3. Injectivity e.g. permeability, thickness and extent of target reservoir sands
- 4. Risk to other assets e.g. risk of fluid / pressure interference with other operating, discovered or undiscovered hydrocarbon fields (note no fresh groundwater)

## 19 sites / concepts initially assessed in screening study -

- Saline aquifers
- Existing hydrocarbon fields
- Enhanced Oil Recovery opportunities

## Five sites further assessed with screening-level simulation studies

## Barrow Island Dupuy Formation only site that adequately satisfied all criteria

**Since 2002** activities have focused on further appraising the selected site and refining the configuration of the injection project



# Geology





The Dupuy storage formation has adequate permeability for injection while still low enough for good residual gas trapping.

- Several seals exist between injection zone and surface
- Adequate existing subsurface data to characterise the site

**Dupuy Formation** 





# Dupuy Formation Containment Mechanisms



Dupuy Formation is an ideal CO2 container with moderate permeability and many baffles.

## Two main trapping mechanisms

- CO2 solution into formation water
- Residual gas trapping (CO2 sticks to rock grains)



1mm

#### Other mechanisms

- Large scale geometric trapping is not required (smaller scale structural/stratigraphic trapping will occur).
- Dupuy Formation is chemically inert so mineralogical trapping will be a longer term effect.





## **Injection location - Barrow Island**



#### **Barrow Island**

- 55km from mainland
- 30km long & 10km wide
- Class A nature reserve since 1910
- Coral reefs around island
- No freshwater aquifers
- Restricted access
- No local community, only workers
- Strict quarantine regime

#### **Barrow Island Oil Field**

- Australia's largest onshore oil field
- Oil production began in 1967
- 95% of oil from shallow Windalia Sand
- Approx. 420 producing wells and 208 water injectors
- Production will continue for many years
- Different ownership to Gorgon Project









## **Carbon Dioxide Injection Project**



### **Approved Development Plan**

- Project sited on north-east of island
- 4 stage compression at gas processing facility
- Buried CO2 pipeline extends north 7 km
- 9 CO<sub>3</sub> injection wells (from 3 drill centres)
- Pressure management (2 drill centres)
  - 4 water production wells
  - 2 water injection wells

### Fit for purpose monitoring program

- 3D baseline seismic survey and repeat 2D and 3D seismic surveys to map lateral extent and broad vertical distribution of CO2
- 2 reservoir observation wells
- Soil gas flux sampling over the 3D seismic source grid and at potential near-surface seepage points
- Program for ensuring existing well penetrations in the plume area do not provide seepage pathways
- Joint Venture commitment to make data from the ongoing monitoring program available to the public





## **Pressure Management**





Pressure management required to reduce impact of rising pressure on CO<sub>2</sub> injection performance:

- Maintain injection rates
- Avoid reaching bottom hole pressure limit
- Optimise storage capacity

### Monitoring

- Wellhead pressure and flow rate
- Continuous down-hole pressure gauges



- Plume movement is influenced by water off-take, reservoir and structure.
- Growth in plume area is most rapid at start of injection





# THANK YOU FOR YOUR ATTENTION



CCS in CDM Workshop – Abu Dhabi, 7-8 September 2011



Diagramatic - Not to scale

## Risk to other resources



Gorgon