

19 June 2004

Session III Climate Mitigation and New Technologoes

The 20th session of the Subsidy body on Scientific and Technological Advice (SBSTA)

Contribution of PV systems to Reduction of CO2

AKASHI TOMITA

Solar Systems Group

SHARP CORPORATION

SHARP What is Photovoltaic?

Page 1

- ➢ Invested Si PV Cell by BELL Lab. in 1958.
- Power by PV is Clean, Huge and Everywhere.
- Rapid Growth of PV Market and Industry since 1994

SHARP 30 years ago, R&D has started

							Pa	age 3
		1992 SS	1993 1996 NSS	1997 2000 NSS	2001 Imp	2003 lementation	2005 Next	
Solar Cell +Modules	Polycrystalline Thin Film Amorphous		Enlargement	Cost Reduction Enlargement	olar Cell	TF poly-Si		
	CIS			Enlargement	nced S	TF CIS Super High E	igh Efficiency	
	Super High Efficiency High Efficiency Poly- Si			Cell High Efficiency	Advar	>		
	Low energy consumption solar grade Siliçon			•	Industrialli	zation Practicallity	Industriallization	
	Advanced Manufacturing Technology	Sim	ple				► ►	
PV Systems	Application and BOS	Inst	allation Build	ding Integrated	ment	Recy	cle and Reuse	
	Modules				Develop	Sy	stem Design	
	Demonstrative research	Hybr	id System	Multi-Hybrid	Mass			
Seads Investigations	Innovative PV technologies for next generation				Innovation			

SHARP PV Market Development in JAPAN

Page 4

Source : New Energy Fundation, SHARP estimated

SHARP Application of Subsidy for Residential PV in JAPAN

Page 5

Page 6

- ➢Global Supply Chain
- ➢Reduction of CO₂
- Social Capital
- Electrification of Non-Electric people
- ➤Agriculture with PV Irrigation

Page 9

Estimated Lifetime of PV system

Over One Century following experimental by SHARP

Page 10

Electric Energy

Acquisition of New Knowledge

Development of Newly Related Jobs

Stability of International Peace

SHARP NEDO project in Mongolia

Page 11

Power supply to 160-residence and so on
Hybrid System of PV and Diesel Power generation
Total Project Cost: approximate US\$ 3 million

New Energy and Industrial Technology Development Organization International Joint Experimental Study of Photovoltaic Power Generation System

<mark>be</mark> sharp[™]

SHARP World Bank Project in Philippine

Page 12

SHARP Food Production with PV Irrigation

Page 13

SHARP Food Production with PV Irrigation

Page 14

Controlled environment

Light, Temperature, Fertilizer , •••

Growth speed : 3 times faster

SHARP Food Production with PV Irrigation

Page 15

This irrigation system can move because it is on the rail.

So, Large area will be able to be under irrigation with this system.

SHARP CONCLUSION

PV industry turns into the promising industry by supportive policies and efforts of manufacturers.

Public policies for supporting R&D are essential to develop renewable energy technology like PV system.

A PV module, although its individual power is rather small, will make a big power generation to meet a large demand once it is built into systems.

PV systems are recommended to be promoted as one of social environmental capital investments.

<mark>be</mark> sharp[™]

point !

Page 16

point !

point !

