
Markus Amann International Institute for Applied Systems Analysis (IIASA)

Synergies between greenhouse gas mitigation and air pollution control in the European Union The Greenhouse Gas-Air Pollution Interactions and Synergies model Environmental impacts of air pollution RAINS estimates for 2000

The Greenhouse Gas-Air Pollution Interactions and Synergies model Multi-pollutant measures considered in GAINS (1) *Trade-offs shown in red, GHGs are underlined*

IASA

• Structural measures:

- Energy savings, efficiency improvements, bans: all pollutants ↓
- − Increased use of natural gas: <u>CO</u>₂, SO₂, VOC, NO_x, PM \downarrow <u>CH</u>₄ ↑
- Biomass: \underline{CO}_2 ↓ VOC, PM, \underline{CH}_4 ↑

• Stationary sources:

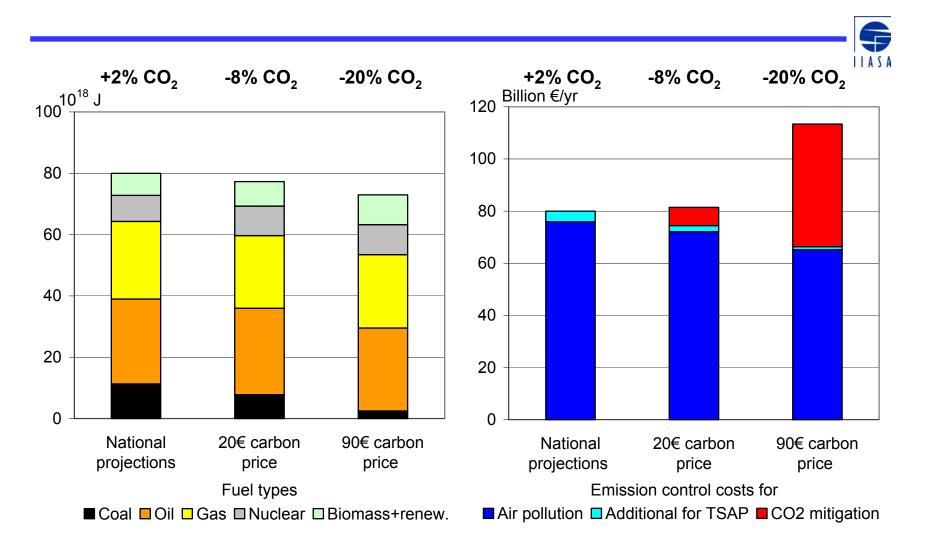
- SCR, SNCR: NO_x, CO ↓, NH₃, N_2O , CO_2 ↑
- Fluidized bed combustion: SO₂, NO_x↓, N_2O ↑
- Advanced residential combustion: VOC, PM, CO, $\underline{CH}_4 \downarrow$
- FGD: SO₂, PM \downarrow <u>CO₂</u> \uparrow
- IGCC: <u>CO</u>₂, SO₂, NO_x, PM ↓
- CHP: all pollutants ↓

Mobile sources:

- Euro-standards: NO_x, VOC, PM, CO ↓ NH₃, N_2O ↑
- Low sulfur fuels: SO₂, PM \downarrow
- Diesel: <u>CO</u>₂, VOC↓, PM, NO_x, SO₂ ↑

The Greenhouse Gas-Air Pollution Interactions and Synergies model Multi-pollutant measures considered in GAINS (2) *Trade-offs shown in red, GHGs are underlined*

• Agricultural sources:


- Low emission pig housing NH_3 , $CH_4 \downarrow N_2O \uparrow$
- Covered storage of slurry $NH_3 \downarrow CH_4 \uparrow$
- Injection of manure $NH_3 \downarrow N_2O \uparrow$
- Anaerobic digestion (biogas) CH_4 , $N_2O \downarrow CO_2 \uparrow NH_3 \downarrow \uparrow$

• Other sources

- Gas recovery and flaring: $CH_4 \downarrow CO_2$, PM, VOC, SO₂, NO_x, CO \uparrow
- Gas recovery and re-use: $CH_4 \downarrow CO_2 \uparrow$
- Improving flaring efficiency: PM, VOC, NO_x, SO₂, CO \downarrow
- Waste incineration: $CH_4 \downarrow CO_2 \uparrow$
- Gas recovery from wastewater treatment: $CH_4 \downarrow CO_2 \uparrow$

In total approx. 500 measures with multi-pollutant impacts considered in GAINS

Energy consumption and emission control costs EU-25, 2020, GAINS estimates

Conclusions

Greenhouse gas mitigation leads to substantial cost savings for achieving air quality targets.

An accurate appraisal of GHG mitigation potentials and costs requires an integrated perspective:

- to avoid double-counting of costs,
- to reveal win-win measures,
- to identify trade-offs, inter alia for
 - enhanced use of biofuels,
 - diesel vehicles,
 - reduction of SO₂ emissions