

CO2 Geological Storage: Lesson Learned from In Salah (Algeria)

lain Wright (CO₂ Project Manager, BP Group Technology)

SBSTA Meeting Bonn May 20th 2006

- CCS Benefits
- CCS Challenges
- The In Salah Project (Algeria)
 - How In Salah is addressing the challenges
- Summary

Technology Options for Stabilization

1 GtC Slices of the Stabilisation Wedge

Examples of Lower Carbon Slices	Scale for 1GtC Reduction b 2050
Increased energy efficiency across the economy	'Emissions/\$GDP' increased
Increased energy efficiency (e.g. vehicles only)	2 billion gasoline/diesel cars achieving 60mpg
Fuel switching natural gas displacing coal for power	1400GW fuelled by gas instead coal
Solar PV or wind replaces coal for povver	1000x scale up PV; 70x scale up for wind
Biofuels to replace petroleum based fuels	200x10 ⁶ ha growing area (equal US agricultural land)
Carbon Capture and Geological Storage	CO ₂ captured from 700 1 GW co plants; storage = 3,500x In Salah/Sleipner
Carbon Free Hydrogen for Transport	1 billion H ₂ carbon free cars; H ₂ from fossil fuels with CO ₂ capto & storage or from renewables o nuclear
Nuclear displaces coal for power	700 1GW plants (2x current)
Biosequestration in forests and soil	Increase planted area and/or reduce deforestation

CCS 2006: Key Challenges

- 1. Reducing the Costs
 - Mainly Capture, Capital Cost and Efficiency
 - Target: \$20-30/t CO₂
- 2. Is it Legal?
 - Long-term Storage Integrity
 - Legal & Regulatory Frameworks
- 3. Can you get Paid?
 - Policy Frameworks
 - Market Eligibility (CDM,ETS)
- 4. Public Acceptance

In Salah CO₂ Joint Industry Project (JIP)

سوناطراك

Three Projects at In Salah

- In Salah Project(s) Overview
 - In Salah Gas Development (1bcf/d \$2,000 million)
 - In Salah CO₂ Storage (1mmtpa \$ 100 million)
 - In Salah CO₂ Assurance R&D (CSLF & EU \$ 30 million)

In Salah Gas Development(1bcf/d \$2,000 million)

In Salah Gas Project

In Salah Gas Processing Plant

CO₂ Storage Pipeline to Krechba

> Export Gas Pipeline Hassi R'Mel & Europe (1 BCF/d

Import Gas Pipeline from Teguentour and Reg

In Salah CO₂ Storage 1mmtpa \$100 million

 Only the separated (yellow) CO₂ will be stored – the combustion CO₂ (blue) will be vented

- Industrial Scale Demonstration of CO₂
 Geological Storage (Conventional Capture)
- Started Storage in August 2004
- 1mmtpa CO₂ Stored (17mm tonnes lifetime)
- \$100mm Incremental Cost (\$6/tCO2)

– No Commercial Benefit

Test-bed for CO₂ Monitoring Technologies

In Salah CO₂ Storage Operation

سوناطراک

Krechba Field

Reservoir

Surface

CO2 Storage Infrastructure

50mmscf/d CO₂ (1mmtpa) Compression Transportation Injection Storage

Power Plant with CCS

In Salah CO₂ Assurance • R&D (CSLF \$30 million)

Objectives (2004-09)

- 1. Provide assurance that secure geological storage of CO₂ can be cost-effectively verified and that long-term assurance can be provided by short-term monitoring.
- 2. Demonstrate to stakeholders that industrial-scale geological storage of CO₂ is a viable GHG mitigation option.
- 3. Set precedents for the regulation and verification of the geological storage of CO₂, allowing eligibility for GHG credits

- Need more cost-effective tools to demonstrate longterm storage integrity
- Oil & Gas Industry already has most of the tools required, but has never had a commercial reason to develop them
- Mother Nature made all geological formations different
 - Monitoring technology that works in one location may not work in another
 - Need to develop a pool of knowledge
 - Need to set standards for site certification

In Salah Monitoring: Status

r	
Technology	Status
4D Seismic/VSP	Programme recommended – KEY TECHNOLOGY
4D Gravity	Modelling completed – marginal response
Tracers	Due to commence 1Q2006
4D Electrical/EM	Initial modelling suggests no response
Dynamic modelling	Building new model in Eclipse
Flow meter surveys	Reviewed and Not Recommended
Wellhead CO ₂ Monitoring	Sampling programme ongoing
Formation water chem.	Analyses incorporated in Shared Earth Model
Injection monitoring	Ongoing by JV
Rock-fluid/Pressure Interactions	Studies ongoing in Norway
Specialist CO ₂ modelling	Part of geochemistry studies ongoing in Norway
Microseismic	Programme recommended- awaiting info on access to suspended wells

Seismic Array Location

- Industrial Scale Demonstration of CO₂
 Geological Storage (Conventional Capture)
- Excellent Analogue for other Countries:
 - China, Europe, North America
- Started Storage in August 2004
- 1mmtpa CO₂ Stored (17mm tonnes lifetime)
- \$100mm Incremental Cost for Storage (\$6/tCO₂)
 - No commercial benefit
- Test-bed for CO₂ Monitoring Technologies
 - \$30mm Research Project