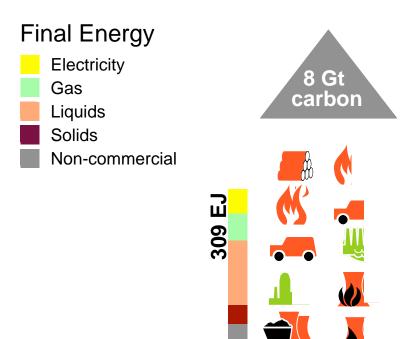
Special Programme for Journalists

Dr W S Kyte

UNFCCC Vienna

Aug 27 2007


Technology

- Technology development necessary but not sufficient
- Political framework needed to drive technology implementation
- Set within market framework to deliver least-cost solutions
- Energy supply and use is key

Energy

- Energy conservation
 - Use less, drive less, etc
- Supply side
 - Nuclear
 - Coal with carbon capture & storage (CCS)
 - Renewables
 - Gas (short to medium term + CCS long term)
- Demand side
 - Energy efficiency lights, motors, etc
 - Plug-in hybrid cars
 - Heat pumps, etc

Today's energy infrastructure

Direct burning of fuel	3-4 Gt
800 million vehicles	1+ Gt
700+ coal power stations	1.5 Gt
Non-commercial biomass	1 Gt
800 gas or oil power stations	0.7 Gt
Non emmitting technologies	0 Gt

8.0 Gt

25EJ per

year solar

500,000

turbines

5MW wind

2000

0-0

1000 1GW gas power stations

vehicles /geothermal (Biofuels)

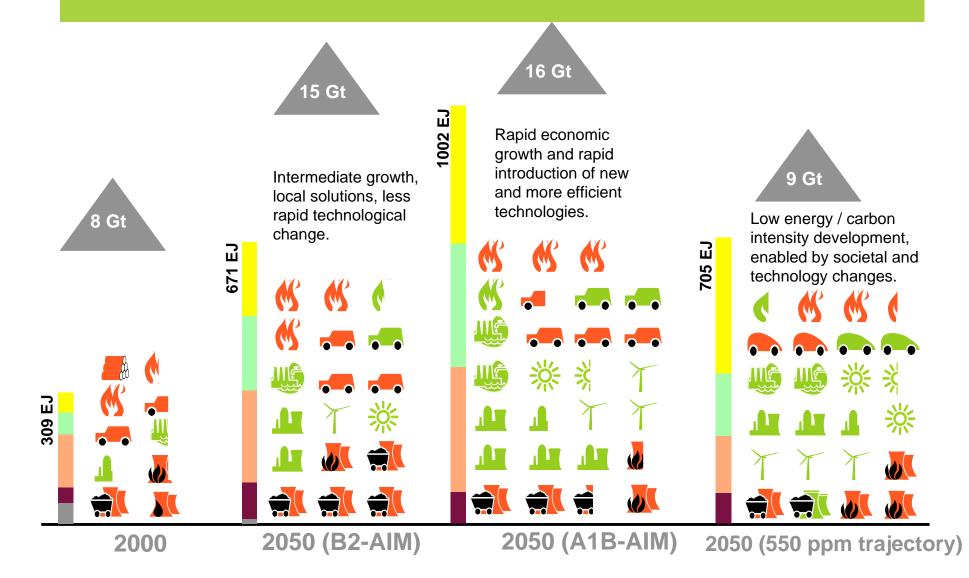
500 million low CO₂

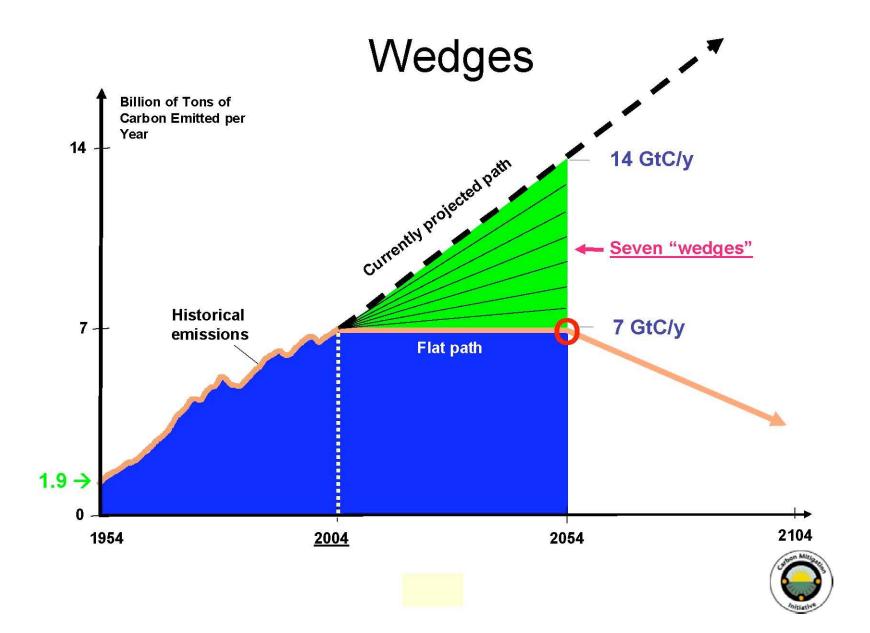
(Biofuels)

50EJ non-100 EJ direct commercial fuel use fuel (Biofuels)

with

oil power stations sequestration


1000 1GW nuclear


plants

1000 1GW hydro/ tidal

500 million

Some options at a glance

Options for change – enabling technologies

Emission reduction

A further shift to natural gas

Nuclear power

Renewables

Bio-products

Carbon capture and storage

Energy conservation and efficiency

n

Wind Electricity

Effort needed by 2054 for 1 wedge:

Two million 1 MW windmills.

Today: 40,000 (2%)

Land cover 30 million hectares

Prototype of 80 m tall Nordex 2,5 MW wind turbine located in Grevenbroich, Germany (Danish Wind Industry Association)

PV Solar Electricity

Photo courtesy of BP

Effort needed by 2054 for 1 wedge:

700 times current capacity

= 60 times faster (linear) growth rate than current

10 million hectares of land

Biofuels

Effort needed by 2054 for 1 wedge:

Two billion 60 mpg cars running on biofuels

250 million hectares of high-yield crops (one sixth of world cropland).

Usina Santa Elisa mill in Sertaozinho, Brazil (http://www.nrel.gov/data/pix/searchpix.cgi?getrec=5691971&display_type=verbose&search_reverse=1_

Buildings / Low Energy Appliances

Space heating/cooling Water heating Lighting Appliances Example:

10 billion incandescent lamps today

 \Rightarrow 50 billion by 2050

 \Rightarrow Full replacement with efficient bulbs would reduce 0.5 Gt/yr C in 2054, assuming existing carbon intensity of power generation

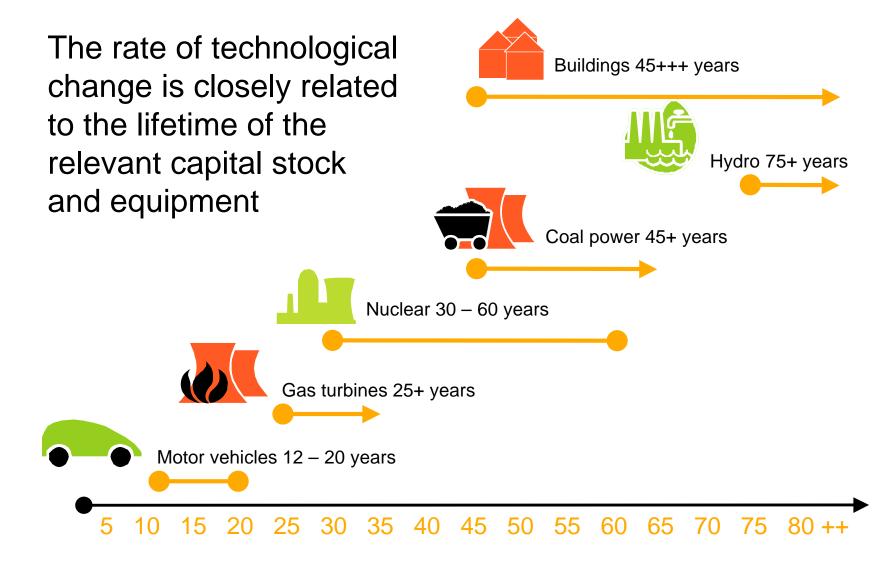
Effort needed by 2054 for 1 wedge:

Buildings emit 3.9 Gt/yr carbon = 20% of total

Cutting emissions from buildings by 25% from 2054 BAU = 1 Gt/yr C

More than half the potential in developing regions

Doing things differently


Urban Design Telecommuting Radical business models Low-carbon wealth creation Not a capping or reduction in valuable activity.

Reducing unnecessary, and unvalued waste: eg current standby capacity in USA = xx large power stations running at full capacity.

A shift in perception of "wealth" and "value" – recent examples of lowcarbon wealth creation:

- cell phones
- IT / software / computer games

The lifetime of energy infrastructure

Humanity Already has the Tools

We have the:

- **READINESS:** All wedge technologies are already deployed somewhere at, or near, commercial scale;
- **PORTFOLIO:** No single wedge technology can do the whole job;
- **CAPITAL:** There is no significant lack of investment.

But, there are significant constraints:

- **POLITICAL:** There is a lack of global political will;
- **TIME:** Decades are needed to change infrastructure;
- **CAPACITY:** Skills and industrial capacity shortage.