ADOPTING EARLY WARNING SYSTEM TO ADDRESS FLASH FLOOD IN THE DEEPLY FLOODED HAOR (WETLAND) BASIN IN NORTH-EAST BANGLADESH

December 2009

CENTER FOR NATURAL RESOURCES STUDIES (CNRS)

www.cnrs.org.bd

anis@cnrs.org.bd

- The greater *haor* basin in the northeastern part of the country covering vast area is a flash flood zone;

- A flood, which is caused by heavy or excessive rainfall in a short period of time over a relatively small upstream area, is referred to as flash flood;
- The flood is an annual recurrent problem causing huge loss in financial terms that makes us vulnerable to poverty;
- The extreme flashy character of the hilly rivers and sudden excessive rainfall in the region causes frequent flash floods;
- In the *haor* areas, flash flood comes from the very steep uplands in Meghalayan hills causing immense damage to the standing crops and properties;

- In flash flood, water level rises and falls quite rapidly with little or no advance warning;
- Typically, flash flood occurs in areas where the upstream basin topography is relatively steep and the concentration time of the basin is relatively short;
- Bangladesh is considered to be a country miserably affected by recurring floods with devastating dimensions exposing the national economy to the vagaries of nature;
- Complete flood control in the geographical context, particularly in the deltaic form of Bangladesh is not at all a feasible option;

(contd...)

- Structural methods of flood protection are neither economically viable nor these are environmentally friendly;

- Therefore, non-structural methods are becoming popular in mitigating flood disaster;
- Non-structural methods of mitigation of flood hazards are very cost effective compared to structural ones (e.g. dams, dikes);
- Among non-structural methods, modern flood forecasting and the use of the real-time data collection systems have increasingly been favored by countries prone to flood events;

(*Contd...*)

- The processes leading to risk has varied territorial circumscription and those do not necessarily coincide with the areas in which risk is expressed or experienced;
- The diffuse and disperse territorial base of risk causation signifies that intervention in favor of risk reduction can not be restricted to the areas where risk is manifested;
- Sometimes this becomes a cross boundary issue demanding a more political solution than that of technological advancements.

Flood Types in Bangladesh

Objectives of the Study

The objective of the people-centered flood early warning systems is to

- develop a early warning model to forecast and empower individuals and communities threatened by the hazards, especially flash flooding; and

- to act in sufficient time and in an appropriate manner to reduce the possibility of crop loss, loss to livelihoods, and damage to property and environment.

Scope and Delimitations of the Study

Varied geo-hydrologic factors involved in the occurrence of flash flooding including

- rainfall runoff relationship;
- excess saturation of the groundwater storage capacity and evapotranspirative demand;
- Upstream river catchments size, main stream length, and sedimentation load; and
- slope and the bifurcation ratio of the first order stream network to its second order ones, amongst others.

Availability of regular geo-hydrological data is in question. No bilateral agreement exists. Moreover, subject catchments do not have sufficient upstream monitoring points to generate above information regularly.

Scope of EWS in the Government System

Early Flood Warning System is recognized by the government as the National Water Policy states,

".....through its responsible agencies, the Government will develop early warning and flood proofing systems to manage natural disasters like flood and drought....."

Elements of Early Warning System

Forecasting comprises of data provision and preparation of flood forecasts and warnings.

Dissemination is the process that relays the forecast and warning information to end-users.

Response to warnings requires that the agencies and communities at risk understand and are confident in the forecast and warning information and that they have options to take action to mitigate the impact of floods.

Existing Early Warning System

Note: Dark line indicate stronger linkage: Dashed line indicates weak link EXISTING EARLY WARNING SYSTEM FORECASTING SYSTEM Data Provision Other Data Sources Bangladesh Meteorological Department Hydrology Directorate of BWDB JRC. SPARRSO (BMD) Provides rainfall and surface water level data Provides Cross border flows, water Provides weather data including rainfall forecasts level, rainfall and sat. images and bathymetry Preparation of Flood Forecasts Flood Forecasting and Warning Centre (FFWC) Support from External Sources 24&48 hr Forecasts of water levels DISSEMINATION SYSTEM Government Secretariat and BWDB Offices News and International Non-Government other Government Offices Information Donors Organizations Media Action taken: Inform district Action: publish/ Action taken: Action taken: Action taken: offices and Disaster Manageent Assess damage Information not broadcast Inform their and need for relief Bureau (DMB) used forecasts partners END USERS (Disaster Managers, central and local government institutions, farmers, communities, infrastructure managers) RESPONSE By individuals, households, communities, organizations

Systems Evaluation and Suggestions

Technology & Tools

- Improving the upstream boundary condition requires the installation of automatic water and rainfall monitoring stations
- Lead time preferences can be improved significantly with addition of data from weather models and also from river basin models

Dissemination

- Lead-time needs to be extended so that forecasts become more useful to the decision makers end users
- Warning messages should be easily understood by end users and preparedness & contingency planning should be promoted

Institutional and Legal

- Lack of clarity about roles & responsibilities of Govt. staffs during floods
- DMB is set up to respond to disasters once they happen rather than to promote disaster awareness
- Mechanism for continuous monitoring and routine feedback should be established for the forecasting and warning system

Guidelines of People Centered Early Warning System

RISK KNOWLEDGE

Systematically collect data and undertake risk assessments

Are the hazards and the vulnerabilities well known? What are the patterns and trends in these factors? Are risk maps and data widely available?

MONITORING & WARNING SERVICE

Develop hazard monitoring and early warning services

Are the right parameters being monitored? Is there a sound scientific basis for making forecasts? Can accurate and timely warnings be generated?

DISSEMINATION & COMMUNICATION

Communicate risk information and early warnings

Do warnings reach all of those at risk? Are the risks and warnings understood? Is the warning information clear and useable?

RESPONSE CAPABILITY

Build national and community response capabilities

Are response plans up to date and tested? Are local capacities and knowledge made use of? Are people prepared and ready to react to warnings?

Location of the Field Demonstration Sites

Location of the Field Demonstration Sites

Location of the Upstream Catchments

Mean Annual Rainfall in and around Meghalaya

S1. No.	Name of Station (Location)	Mean Annual Rainfall (mm)		
1	Shillong (Central Meghalaya)	2,271		
2	Dhubri (Lower Assam)	2,436		
3	Lumding (Upper Assam)	1,161		
4	Guwahati (Central Assam)	1,538		
5	Silchar (South Assam)	3,018		
6	Cherrapunjee (South Meghalaya)	11,131		
7	Tura (Far West Meghalaya)	3,500		
8	Williamnagar (West Meghalaya)	3,207		
9	Nongstoin (Central West Meghalaya)	3,207		
10	Baghmara (S-W Meghalaya)	3,698		
11	Sylhet (N-E Bangladesh)	7,000		
12	Mymensingh (North Bangladesh)	2,432		
13	Tangail (Central Bangladesh)	1,440		
14	Dhaka (Central Bangladesh)	1,400		
N.B.	* Rainfall data based on 30 years normal (1960-1990) ** Projected through interpolation method for 5 years average (1987- 1991) *** Data based on 30 years mean of monsoon season (June - Sept) (1951 - 1980)			
Source:	Climatic Tables Part - I, Indian Meteorological Department (IMD), Pune District Research Laboratories of Different District Head Quarters Bangladesh Meteorological Department, Dhaka (BMD)			

<u>Haors in Tahirpur Upazila</u>

Factors Affecting the Occurrence of Flood

- 1. Duration of Rainstorms through Monsoon Season
- 2. Rainfall in Upper Catchments (observed and forecast)
- 3. Soil Water Holding Capacity and Excess Saturation
- 4. Soil Infiltration and Evapotranspirative Demand
- 5. Runoff Generation and Lag Time Preference
- 6. Water Level and Unit Discharge of Lowland Rivers
- 7. Local Rainfall and Channel Navigability
- 8. Crop Calendar and Status of Protection Infrastructures
- 9. Social and Territorial Aspects of Risk
- 10. Climate Change and Variability

Is This Flood or Inundation?

Cultivation Practice in Tahirpur Upazila

Cropping	Land Area	Percentage			
Boro/ Spring Harvest	Kharip-1	Kharip-2	in hector	(%)	
Boro	Fallow	Fallow	13,624.60	65.88	
Boro/ Wheat	Fallow	T Aman	3,023.74	14.62	
Mustard	Fallow	T Aman	1,1411.08	6.82	
Nut	Aush	T Aman	604.74	2.92	
Spices/ Vegetables	egetables	T Aman	203.16	0.98	
Pulse	Fallow	T Aman	400.00	1.93	
Mixed	Sugarcane	Sugarcane	400.00	1.93	
Mustard/ Linseed	Jute	T Aman	406.32	1.96	
Sweet potato	Fallow	T Aman	406.36	1.97	
Vegetables/ Spices	Vegetables	Vegetables	200.00	0.97	

Lead Time Preference to Save Different Assets

Assets		Days*		
	1 day	2 day	7 day	
Structures			\checkmark	
House Contents		\checkmark		
Outside Property			\checkmark	
Livestock				
Agriculture			\checkmark	
Culture Fisheries			\checkmark	

* Indicates lead time required to save 70% or more of the asset.

Deforestation and Flood - a General Model

History of Flash Flooding in Sunamganj

Year	Flood water entered the <i>haor</i>	Inundating the <i>boro</i> crops	Extent of damage	Damaged <i>boro</i> crop in hector	Cost of damaged crops in Lac taka
1996	16 March	18 March	75%	29,822	4,102.07
1997	22 May	24 May	15%	9,830	1,278.84
1998	20 May	23 May	40%	11,579	2,365.02
1999	03 May	06 May	45%	10,950	976.65
2000	28 April	30 April	70%	1,355	420.14
2001	27 April	30 April	75%	4,963	1,899.95
2002	14 April	18 April	70 %	21,677	7,058.16
2003	27 May	30 May	20%	20,997	8,666.87
2004	13 April	15 April	90 %	95,402	34,860.40
2005	22 May	25 May	15%	-	-

Soil Erosion in Cherrapunjee Catchment

Model of Evolution of a Small Valley

A - before deforestation, B - after deforestation (1 - resistant sandstone beds, 2 - less resistant sandstones and shales, 3 - regolith of laterithic type, 4 - colluvial deposits (also deeply weathered), 5 - sliding sandstone blocks, 6 former valleys transact) Stream Ordering

Model of Evolution of a Small Valley

Model of Evolution of a Small Valley

Geo-hydrological Characteristics of the Plateau

- The plateau represents the extremely high rainfall where deforestation and extensive land use practices have accelerated the process of water circulation leading to complete degradation of soils and vegetal cover.
- Bengal Plains at lower elevations receive less than 2500 mm rain annually, while Cherrapunjee and Mawsynram areas nearer the edge of the plateau get an average annual precipitation ranging from 8,000 to 24,000 mm.
- The highest daily rainfall was recorded 1,563 mm on 16 June 1995 in Cherrapunjee, the other extremes are: 14 June 1876-1036 mm, 12 July 1910-998 m, 5 June 1956- 974 mm, 15 June 1995- 930 mm 29

Spatial Gradient of Mean Annual Rainfall

Places	Rainfall Differences (mm)	Linear Distance (km)	Spatial Gradient (mm/km)
Cherrapunjee – Shillong	8,860	40	221.50
Cherrapunjee – Sylhet	8,699	45	193.31
Cherrapunjee – Jowai	4,831	55	87.84
Cherrapunjee - Mawsynram	2,60	14	18.57
Mawsynram – Dhubri	8,984	180	49.91
Mawsynram – Tura	7,920	147	53.88
Mawsynram – Baghmara	4,420	91	48.57
Shillong – Guwahati	733	60	12.21

Spatial Gradient (Cherrapunjee - Sylhet)

Identification of Geohydrological Units

Ordering and Size of Geo-hydrological Units

Higher Order	Name of the Higher Order Catchments	Area (sq. km.)	Middle Order Catchment		Lower Order Watershed and Inter Catchments	
			Total No	Average Size (sq. km.)	T. No	Average Size (sq. km.)
I	Junjiram	2628.65	4	657.16	19	138.35
II	Balbola	493.16	2	246.58	5	98.63
III	Dhudnai	1629.16	2	814.58	8	203.64
IV	Manki-Singram	1416.26	4	354.06	13	108.94
V	Kulsi	2204.73	4	551.18	19	116.04
VI	Umran	2702.78	3	900.93	13	207.91
VII	Borpani	1695.84	3	565.28	13	130.45
VIII	Kopili	3455.02	5	691.00	26	132.88
IX	Diyung	1161.16	3	387.05	7	165.87
X	Layang	831.30	3	277.10	3	277.10
XI	Lubhar	947.17	2	473.58	7	135.31
XII	Praog	1674.06	3	558.02	8	209.26
XIII	Umsoh-Ryngkew	1568.13	2	784.06	9	174.23
XIV	Kynshi	4560.22	6	760.04	41	111.22
XV	Simsang-Someswari	2910.80	4	727.71	25	116.41
XVI	Daring	1389.29	3	463.09	12	115.77
XVII	Marai	806.54	2	403.27	7	115.22
Total		32,074.30	55	583.17	235	136.49 ₃₃

Meghalaya Plateau – Target Catchments

Meghalaya- Mean Annual Evapotranspiration

Meghalaya Plateau -Mean Annual Rainfall

Meghalaya- Mean Annual Water Holding Capacity

Meghalaya Plateau – Mean Annual Runoff Depth

Meghalaya Plateau - Mean Annual Runoff Ratio

Meghalaya Plateau – Volume of Surface Runoff

Meghalaya Plateau – Volume of Surface Runoff

Year	Flood water entered the <i>haor</i>	Inundating the <i>boro</i> crops	Extent of damage in %	Last 3 days cumulative rainfall (mm)	Maximum Daily Rainfall (mm)	Maximu m Daily Rainfall (mm)
1997	22 May	24 May	15%	600	22 May	449.4
1998	20 May	23 May	40%	738	23 May	390.4
1999	03 May	06 May	45%	818	4 May	560.6
2000	28 April	30 April	70%	867.9	30 April	686.6
2001	27 April	30 April	75%	600	22 April	449.4
2002	14 April	18 April	70 %	389.9	17 April	192.1
2003	27 May	30 May	20%	290.4	28 May	148.8
2004	13 April	15 April	90 %	716.5	14 April	492.2
2005	22 May	25 May	15%	94.5	24 May	48.5

Rainfall Records in Cherrapunjee Catchment

River Gauge Level at Jadukata River Section

2005 (Jan - Dec)

43

Water Level and Discharge of Jadukata River (2004)

44

Water Level and Rainfall (Cherrapunjee) in 2004

Location and Characteristics of Umiew Catchment

Area – 45.89 sq km, Runoff Depth -7240.25 mm, Total Runoff – 339495 m ha, Stream Length – 3218.69 km,

The catchment is drained by the Umiew River (80 km. long), which is the right bank tributary of the Surma River flowing in Bangladesh.

The river is characterized by strong attitudinal gradients, varying between 60 m and 1965 m a.s.l.

LEGEND

- 1 mountains and uplands
- 2 ísohyets wíth average annual raínfall (mm) for the períod 1999-2000
- з contours every 400 m
- 4 rainfall stations
- 5 elevations (m a.s.l)

Runoff Yield Assessment

Dírect Runoff and Unit Hydrograph for 1.0 cm of Effective Rainfall over Watershed for 97 Days Rainstorm (23rd June - 29th September 2004)

Tíme (days)	Total Runoff Ordínates (l/s)	Base Flow Ordínates (l/s)	Dírect Runoff (col2 - col3) (l/s)	unit Hydrograph (l/s per cm of Pnet)
(1)	(2)	(3)	(4)	(5)
0	500	500	0	0
5	250	250	0	0
10	855	240	615	5.19
15	1730	180	1550	13.07
20	2250	100	2150	18.05
25	2500	100	2400	20.25
30	2750	100	2650	22.36
35	2250	110	2140	18.05
40	2100	120	1980	16.71
45	1500	185	1315	11.09
50	1250	250	1000	8.44
55	1100	265	835	7.04
60	1100	285	815	6.03
95	540	540	0	0 17

Runoff Yield Assessment

Dírect Runoff and Unit Hydrograph for 1.0 cm of Effective Rainfall over Watershed for 158 Days Rainstorm (12 June - 31 December 2005)

Tíme (days)	Total Runoff Ordínates (l/s)	Base Flow Ordínates (l/s)	Dírect Runoff (col2 - col3) (l/s)	unit Hydrograph (l/s per cm of Pnet)
(1)	(2)	(3)	(4)	(5)
0	500	500	0	0
5	250	250	0	0
10	900	250	650	5.63
15	1000	210	790	6.36
20	2200	200	2000	16.11
25	3500	190	3310	26.66
30	4400	100	4300	34.64
35	3700	120	3580	28.83
40	1 7 50	180	1570	12.65
45	1250	230	1020	8.21
50	1000	250	750	6.04
55	750	265	485	3.90
60	700	350	350	2.82
65	650	450	200	1.61

Runoff Yield Assessment

- 1. Runoff is an independent factor in flood modeling;
- 2. Higher runoff ratio because of full saturation of groundwater storage capacity;
- 3. Lesser infiltration and percolation rates during post monsoon time;
- 4. The small size catchments area which reduces catchments lag time to run water fast to the mouth of the watershed;
- 5. Rainfall is sometimes delayed which creates its uneven distribution pattern. For example, about 20 percent share of monsoon rain reduced in the N-E India in 2005 because of delayed onset of monsoon;
- 6. Direct runoff is calculated through subtracting base flow originates from the flow discharge and then the unit hydrographs for 1.0 cm of effective rainfall (i.e. often called net rainfall, an amount after subtracting initial abstraction from total rainfall) ;

Monthly Average Rainfall (March 1979 - 2008)

Climate Change and Variability

Modelling Approaches and Techniques

Empirical Model – Catchments Lag Time Calculation

- 1. Catchments Lag (t_p in hours) the time duration between the centroid of the unit rain);
- 2. It is directly related to the interaction of total length of longest water course (L in km) with the length of water course from its outlet to the point inside the center of catchments (L_{ca} in km);
- 3. It is inversely related to overall slope of the water course;
- 4. Geo-morphological parametric relationship in its log form:

 $t_{p} = ct \{ (L * Lca)^{n}/s^{0.5} \}$

Where ct and n are coefficients, ct is proportionality coefficient for catchments parameters and calculated by Linsely, et al. (1958) as 1.715 for the mountain region, 1.03 for foot hills, and 0.05 for valleys. For Indian conditions, Mutreza (1986) reported the coefficient values as ct = 1.13 and n = 0.2769 for mountain and hill areas.

Empirical Model – Catchments Lag Time Calculation

5. Equation for catchments lag time for Kynshi River Catchment may be written as,

 $tp = 1.13 \{ (L * Lca) 0.2769/s0.5 \}$

- 6. Lag time for Sub Catchment is 13.34 hours, for the higher order catchment is 22.77 to 27.57 hours, and 3 4 hours for valley lag (Laurergarh to Tahirpur);
- 7. Total Lag tíme calculated ís 40 to 45 hours for Kynshí Catchment during shorter rainstorms of post monsoon seasons after full saturation of soil conditions
- 8. Using the same equation, Catchments Lag time for Umsoh-Ryngkey Catchments is calculated 23 to 25 hours after full saturation of soil conditions .

Lumped Conceptual Model

The approach allows to some extent the introduction of spatial variability hydrological parameters (and responses). The modeling criteria's are:

1. Saturation status of groundwater storage capacity;

2. Antecedent (3 days cumulative) rainfall observations at Meghalaya Plateau;

з. Successíve (з days cumulatíve) raínfall forecasts at Meghalaya Plateau;

4. Observed river gauge readings at different nodal points of the longest water course from its outlet to the point inside the center of catchments;

5. Condition of flood protection infrastructure and vulnerability status; and

6. Local rainfall forecast (next 3 days cumulative).

Factors affecting the Hydrological Events

S1	Factors Affecting	Maximum Value				
1	Saturation status of groundwater storage capacity	Yes / Not*				
	* If saturated (YES), flood may happen; If not saturated (NOT) or within first 10 days from the start of the monsoon rain, no such risk for next 3 days and no need to proceed further for that day. But keep notes of the next 5 days forecasted rainfall.					
2	Rainfall observations at Meghalaya Plateau (last three days cumulative)	40				
3	Rainfall forecasts at Meghalaya Plateau (next three days cumulative)	40				
4	Observed river gauge readings at different nodal points of the longest water course from its outlet to the point inside the center of catchments	10				
5	Condition of flood protection infrastructure and vulnerability status	05				
6	Local rainfall forecast (next 3 days cumulative)	05				

Extent of Flood and Respective Warning Message

S 1	Flood Category	Total Value	Flood Warning Message
1	Extremely High	Above 80	Crop loss is certain –forced harvesting (as much as they can) recommended without further delay
2	Highly Flooded	70 to 80	Crop loss is almost certain, – urgent repairing of embankments and forced harvesting of mature crops recommended
3	Moderatel y flooded	60 to 70	Crop loss may happen – maintenance and close monitoring of the embankments recommended
4	Low Flood	50 to 60	Regular maintenance, monitoring and guarding of the embankments recommended
5	Flood Free	Less than 50	Regular monitoring and guarding of the embankments recommended

Rainfall Observations (last 3 days cumulative)

S1. No	Rainfall Category	Rainfall Observation (last 3 days cumulative)	Weighted Value
1	Extremely High	Above 300 mm	40
2	Very High	200 to 300 mm	35
3	High	150 to 200 mm	30
4	Highly Moderate	125 to 150 mm	25
5	Moderate	100 to 125 mm	20
6	Moderately Low	75 to 100 mm	15
7	Low	50 to 75 mm	10
8	Very Low	Less than 50 mm	5

Rainfall Observations (last 3 days cumulative)

A Effa 'see

coordingly, a droplet of radius build take about 4 hours to fall thre it is 1000 metres thick. Stokes Law the larger water drops of drizz re is as yet no uniform law by which to the terminal velocity of a spheri its size.

ting back to the population of we can now see that the larger fail at a faster rate because of fail speed. On their downward patt encounter several smaller ones o their smaller fall speed, do not get out of the way. Would these sn en, be captured by the larger ones?

the smaller drops would be captiprobability, would combine with but there are other mechanisms to to estimate. In the first place, it is not at two water drops coming together scence. It is difficult to find out, by experiments alone, what happens mail water drops meet. The little evidence that there is at present possibility of a bounce-off following nen two drops collide, their

herical shapes are distorted. Id then be followed by

	ALNEAL	1 A	T 50	HR	A (CHI	ERRAPU	NJEE)
KI	AINFAL		INUAL PA	INFA	112	· 1195:	2.2 mm
35 1	EAR AVE	HERRAPHI	NJEE (19	73-20	(\$00		
AVER	AGE ANI	NUAL RA	INFALL	AROU	ND THE	WORLD -	1000 mm.
MONTH	AVERAGE	2007	2008	MONTH	AVERAGE	2007	2008
Tax	11.1	0.0	47.0	JUL	3173.5	4132.8	3615.8
NAN	- 14.4	121.4	54.0	AUG	1781.7	973.6	2966.4
FEB	40.5	131.4		149	1101.1		799.2
MAR	319.6	21.6	570.3	SEP	12275	1958.0	407.0
APR	844.7	800.3	509.3	OCT	540.7	728.4	368.3
MAY	1365.9	1081.3	400.7	Nov	69.5	218.4	
JUN	2519.9	2601.0	2092.6	DEC	24.1	0.0	100 1.00
				Total	11 952.2	12616.8	and the second
-	1100 101		and the second second	Turne	11 754 2	12040.0	
REAL	INGS IN	MM.	THIS }	EAR'	9 RUNN	IING TOT	AL
-		The survey of the local division of the loca	the second s	about a state			

						REAL PROPERTY AND INCOME.
	-	1951	1	15,846	5.2	Cherrop
		1952		11,073	8.8	Mt.Waia
ł		1953		12,416	.4	Shillono
		1954		13,521	.3	Guwahat
	1	1955	1	13,608	.3	Kolkata
		1956	1	13,783	.0	New Dell
	1	1957	1	9,559	.8	Mumbai
	L	1958	1 and	10,564	0	Chennai
		1959		11,595	3	Dhaka
		1960		NA	1	Sylhat
	1	1961		NA		Banakalı
		1962		6 807		Luglal
	1	1963	T	NA		cuala Lun
I		1964	T	NA		singapore
I		1965	t	N.A		long Kon
ſ		1966	100	IN.A	E	seijing
	15	1967	1	7.047.9	S	eoul
	and and	1968	-	7,947.0	T	okyo
	1	1960	-	0,749.7	I	slamabad
	1	1070	1 Now	8,921.7	K	abul
	-	1070	1	7,200.1	Te	ehiran
		19/1	1	8,469.0	Bo	ahdad
	-	1972		NA	41	Jindud

Sources of Rainfall Observations Data

	Governme	nt of Meghalaya Official sta	te portal					
	Weather							
10	Weather Watch							
Home		Shillong		16 September 2008				
Weather Forecast		Maximum Temperature	:	25.1° C				
Agro Advisory		Minimum Temperaturer	3	17.2° C				
Rainfall Chart		Relative Humidity (Morning)	:	64%				
		Relative Humidity (Evening)	:	86%				
		Rainfall		0.000				

<u>http://meghalaya.níc.ín/weather/watch.asp</u>

http://education.vsnl.com/rmcguwahati/shlfc.html

Sources of Rainfall Observations Data

Day	Temp °C		Rainfall	Total Rainfall for the year	Air Pressure in mb		Wind Speed
	Min	Max		till Date	Morning	Evening	
1	2	3	4	5	6	7	8
16th Sep 2008, Tue	19.7	24.0	0.0	10868.5	865.6	864.9	04 k/h
15th Sep 2008, Mon	21.7	28.2	0.0	10868.5	866.1	862.7	03 k/h
14th Sep 2008, Sun	17.6	27.2	47.2	10868.5	867.3	864.0	02 k/h
13th Sep 2008, Sat	19.2	26.6	0.0	10821.3	867.1	863.9	01 k/h
12th Sep 2008, Fri	18.8	26.0	0.0	10821.3	867.7	864.1	00 k/h
11th Sep 2008, Thu	18.9	24.6	30.8	10821.3	868.1	864.7	01 k/h
10th Sep 2008, Wed	17.6	25.6	0.0	10790.5	868.1	864.3	01 k/h
09th Sep 2008, Tue	18.1	24.0	0.0	10790.5	868.6	864.8	01 k/h
08th Sep 2008, Mon	18.5	24.2	0.0	10790.5	868.2	865.0	01 k/h
07th Sep 2008, Sun	17.2	23.8	0.0	10790.5	868.0	864.6	00 k/h
06th Aug 2008, Sat	17.3	21.5	11.6	10790.5	867.8	865.3	00 k/h
05th Sep 2008, Fri	16.5	21.2	133.6	10788.9	868.4	865.1	02 k/h
04th Sep 2008, Thu	17.5	22.4	64.9	10655.3	869.2	865.8	02 k/h
03rd Sep 2008, Wed	17.5	20.6	215.3	10590.4	868.4	866.2	03 k/h
02nd Sep 2008, Tue	18.2	22.0	51.3	10375.1	868.9	865.9	03 k/h

http://www.cherrapunjee.com/current_status_02.php

Rainfall Forecasts (next 3 days cumulative)

Sl. No	Rainfall Category	Rainfall Forecasts (next 3 days cumulative)	Weighted Value
1	Extremely High	Above 300 mm	40
2	Very High	200 to 300 mm	35
3	High	150 to 200 mm	30
4	Highly Moderate	125 to 150 mm	25
5	Moderate	100 to 125 mm	20
6	Moderately Low	75 to 100 mm	15
7	Low	50 to 75 mm	10
8	Very Low	Less than 50 mm	0

Sources of Rainfall Forecasts Data

PARAMETERS					
	DAY-1 25/06	DAY-2 26/06	DAY-3 27/06	DAY-4 28/06	DAY-5 29/06
Rainfall (mm)	3	4	11	10	15
Max Temp Trend (deg C)	1.1	0.0	-0.3	-2.9	1.2
Min Temp Trend (deg C)	-0.3	0.9	0.0	-1.1	-0.2
Total cloud cover (octa)	5	7	8	8	8
Max Relative Humidity (%)	95	95	95	97	98
Min Relative Humidity (%)	63	67	64	67	79
Wind speed (kmph)	002	004	004	002	004
Wind direction (deg)	220	230	180	170	110

NOTE: -99.0 NO DATA

http://www.imd.gov.in/section/nhac/distforecast/east-khasi-hills.htm

Alternate Sources for Rainfall Forecast Data

Precipitation forecasts from the National Centers for Environmental Prediction. Normal rainfall derived from Xie-Arkin (CMAP) Monthly Climatology for 1979-2003. Forecast Initialization Time: 00217JUN2008

GrADS: COLA/IGES

http://www.monsoondata.org/wx/prec.html

(Background does not depict political boundary)

Water Level Readings of Jadukata River

Sl. No.	Water Level	River Gauge Data	Weighted Value
1	Extremely High	Above 8.00 meter	10
2	High Level	7.00 to 7.90 meter	6
3	Moderate Level	6.00 to 6.90 meter	4
4	Low Level	5.00 to 5.90 meter	2
5	Flood Free Level	Less that 5.00 meter	0

<u>Data Source</u>: Water Level Monitoring Station (station number 131), Bangladesh Water Development Board (BWDB), of Laurergarh – Shoktirkhola point of jadukata river.

Structural Measures to Flood Protection

S1.	Structural Strength	Weighted Value
1	Very Good Condition	0
2	Good Condition (needs regular monitoring)	1
3	Fairly Good Condition (requires some repairing)	2
4	Vulnerable (immediate reaping works)	3
5	Critically Vulnerable (external support for repairing)	5

Local Rainfall Observations (last 3 days cumulative)

S 1	Rainfall Category	Rainfall Observation (last 3 days cumulative)	Weighted Value
1	Extremely High	Above 200 mm	5
2	Very High	175 to 200 mm	4
3	High	150 to 175 mm	3
4	Moderate	100 to 150 mm	2
5	Low	50 to 100 mm	1
6	Very Low	Up to 50 mm	0

Physically-Based Distributed Model

Example of a Physically-Based Distributed Model

Computer Based Simplistic Model Template for EW

TEMPLATE FOR FLOOD FORECASTING

(A) DECLEARATION OF INDICATOR VERIABLES

OBSERVED RAINFALL MEGHALAYA	FORECASTED RAINFALL	RIVER GAUGE LEVEL	CONDITION OF EMBANKMENTS	OBSERVED RAINFALL- SYLHET
Extremely High flood, above 300 mm rain, 40 points	Extremely High flood, above 300 mm rain, 40 points	Extremely High Level, above 8.00 meter, 10 points	Very Good Condition, 0 point	Extremely High flood, above 200 mm rain, 40 points
Very High flood, 200 to 300 mm rain, 35 points	Very High flood, 200 to 300 mm min, 35 points	High Flood Level, 7.00 to 7.90 meter, 6 points	Good Condition (needs regular monitoring), 1 point	Very High flood, 175 to 200 mm rain, 35 points
High flood, 150 to 200 mm rain, 30 points	High flood, 150 to 200 mm rain, 30 points	Moderate Flood Level, 6.00 to 6.90 meter, 4 points	Fairly Good Condition (requires some repairing), 2 points	High flood, 150 to 175 mm rain, 30 points
Highly moderate flood, 125 to 150 mm rain, 25 points	Highly moderate flood, 125 to 150 mm min, 25 points	Low Flood Level, 5.00 to 5.90 meter, 2 points	Vulnerable (immediate resping works), 3 points	Highly moderate flood, 125 to 150 mm min, 25 points
Moderate flood, 100 to 125 mm rain, 20 points	Moderate flood, 100 to 125 mm rain, 20 points	Flood Free Level, less that 5.00 meter, 0 points	Critically Vulnerable (external support for repairing), 5 points	Moderate flood, 100 to 125 mm rain, 20 points
Moderately Low flood, 75 to 100 mm min, 15 points	Moderately Low flood, 75 to 100 mm min, 15 points			Moderately Low flood, 75 to 100 mm min, 15 points
Low flood, 50 to 75 mm rain, 10 points	Low flood, 50 to 75 mm rain, 10 points			Low flood, 50 to 75 mm rain, 10 points
Flood Free, less than 50 mm rain, 5 points	Flood Free, less than 50 mm rain, 5 points			Flood Free, less than 50 mm rain, 5 points

(B) GENERATION OF WARNING MESSAGES

FLOOD CATEGORY	WARNING MESSAGES	
Extremely High Flood, above 80 points	Crop loss is certain-forced harvesting (as much as they can) recommended without further delay	
High Flood, 70 to 80 points	Crop loss is almost certain, - urgent repairing of embankments and forced harvesting of mature crops recommended	
Moderate Flood, 60 to 70 points	Crop loss may happen - maintenance and close monitoring of the embankments recommended	
Low Flood, 50 to 60 points	Regular maintenance, monitoring and guarding of the embankments recommended	
Flood Free, less than 50 points	Regular monitoring and guarding of the embandements recommended	

(C) INPUT DATA

Observed Rainfall in Meghalaya	Forecast Rainfall in Meghalaya	River Gauge Level at Jadukata	Condition of Embankments	Observed Rainfall in Sylhet
130	180	7	2	90

(D) PROCESSING OF WARNING MESSAGES

High Flood - Crop loss is almost certain, – urgent repairing of embankments and forced harvesting of mature crops recommended

Computer Based Simplistic Model Template for Flood Early Warning

Human Response to the Flood Hazards

Warning Generation Dissemination System

