Thematic event

Support for accelerated actions in urban environment and land use to drive mitigation ambition and facilitate sustainable development

Agriculture, Forestry and Other Land Use (AFOLU)

Compendium. Volume: Agriculture, Forestry and Other Land Use

Support for mitigation actions in AFOLU

Martial Bernoux

Compendium GHG Baselines and Monitoring AFOLU

General purpose:

- Resource map of approaches, methodologies and tools
- For various AFOLU mitigation actions

Target users:

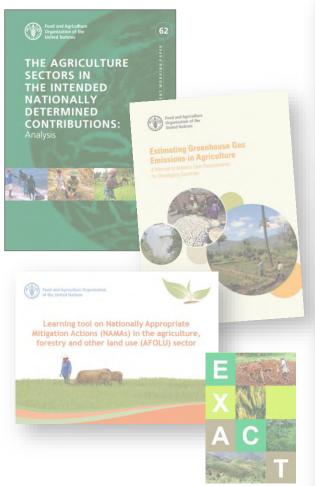
- Policy makers
- NAMA designers and implementers

Guidance given regarding:

- General considerations when designing AFOLU baselines
- Selecting and implementing methodologies for baseline design
- Data sources for activity data and emission factors
- Effective and cost-effective monitoring
- Technology-specific suggestions for baseline-setting and monitoring

- 1. Define the purpose of the baseline
- 2. Identify mitigation actions which will be evaluated
- 3. Identify relevant GHG emission sources and carbon stocks
- 4. Define the scope and boundaries of the baseline
- 5. Determine the methodology for developing the baseline
- 6. Identify the parameters required
- 7. Review available data sources
- 8. Construct a trend baseline if needed
- 9. Apply the historical data
- 10. Consider sampling campaigns
- 11. Design and implement inventory and institutional arrangements
- 12. Ensure baseline validity, correct as required

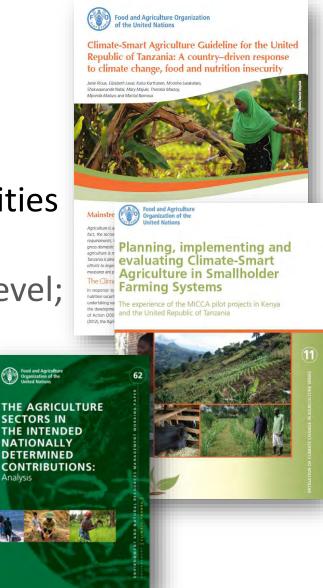
Step 3: Identifying relevant emission sources / carbon sinks


		emission source /	Biomass/dead	SOC stock		Agricultura		l activities		Livesto
		carbon sink Type of mitigation action		mineral soils	organic soils	biomass burning	biomass residues	liming +urea	fertilizer	manure e manag. fe
Forest land		Reducing deforestation	main	likely		likely		possible	possible	
	2	Reducing degradation	main							
	5	Forest conservation	main							
	2	Afforestation/reforestation	main	likely				possible	possible	
		Forest management	main							
		Forest restoration	main							
Cropland		Nutrient management		likely		possible	possible	likely	main	possible
	3	Tillage management		main		possible	likely	possible	likely	
	5	Residue management		main		possible	main	possible	likely	
	2	Water management		likely						
	5	Set-aside and land-use change	main	ma	ain					
		Biochar application		main					Possible	
٥		Rice flooding management			main					

Step 6: Parameters for each emission source / carbon sink

course / stock	Parameters							
source / stock	Tier 1	Tier 2						
DC stock organic soils	area affected							
(CO ₂)	amount of peat extracted before and after							
	not measured	fraction of N in SOM						
Biomass burning CO ₂ (for land-use change), CH ₄ , N ₂ O)	area affected							
	quantity of biomass burnt per area	quantity of biomass and dead organic matter burnt per area						
Biomass residues (CO ₂ , N ₂ O)	areas residues are left on the field, area burnt, by residue type							
iming + urea application (CO ₂)	quantity of lime, dolomite and urea applied	quantity of lime, dolomite and urea applied, lime purity and C content						
	not measured	specific emission factors						
norganic and organic fertilizers N ₂ O)	quantity of manure, crop residues, N-fixing crop residues, synthetic and organic fertilizer applied	quantity of manure, crop residues, N-fixing crop residues, synthetic and organic fertilizer applied at various conditions						
	number and category of livestock in the country	number and category of grazing livestock						
	SOC change due to land-use change	SOC change due to land-use change						

Flagship- Programme: Mitigation of Climate Change in Agriculture (MICCA)



FAO support for mitigation actions in AFOLU

- Give guidance on CC mitigation (& adaptation) options;
- Provide evidence that CSA practices can reduce GHG emissions, improve farmers' lives and make local communities able to adapt to changing climatic conditions;
- Evaluate production cost of mitigation options at farmer level;
- Analyze AFOLU commitments in NDC and assess gaps and needs to achieve the Paris Agreement target;
- Improve the capacity in the design of NAMAs also as instrument of NDCs implementation.

FAO support for reporting mitigation actions in AFOLU

 Monitor and assess GHG emissions and the mitigation potential in agriculture;

 Enhance countries' capacity to build a sustainable National GHG Inventory system;

Provide data, methodologies and tools to help countries

 improve GHG actimates:

improve GHG estimates;

MRV guidance tool for mitigation actions

On the ground FAO support – countries' activities

- Institutional arrangements activities to facilitate the dialogue among different national actors (Costa Rica); support in identifying roles and responsibilities (Paraguay) and raise awareness on agriculture and land use issues for UNFCCC negotiators (Asia-Pacific)
- Ad-hoc country QA and verification process to improve the national GHG inventory (<u>Colombia</u>, <u>Mexico</u>), validate BUR submissions (<u>Ecuador</u>) and through the <u>AFOLU Emissions</u> Analysis Tools

Food and Agriculture Organization

On the ground FAO support – countries' activities

Peer-to-peer country capacity development in building a sustainable National GHG Inventory and/or design improvement plans for subsequent submissions using different modalities:

- Remote grand-brothering/sistering and in-country experts visits (<u>Uruguay</u>);
- Ad-hoc training sessions in FAO HQs (PNG, Côte d'Ivoire, Benin);
- In-country capacity development workshops (Bangladesh, Myanmar, Ecuador, Dominican Republic);
- Support in the design of NAMAs (Kenya, Chad, Mozambique).

On the ground FAO support – regional activities

- Anglophone countries in Africa (Converting INDCs into action: the role of NAMAs in INDC implementation)
- Asia and the Pacific (regional workshop on MRV for the ETF for identifying country specific needs)
- ECOWAS countries (UNDP/UNFCC/FAO workshop on Sub-Regional Dialogue on MRV framework)
- Francophone countries in Africa (FAO/4C Maroc regional workshop on the financial source for mitigation actions in the energy and AFOLU sectors).

FAO tools for reporting mitigation actions in AFOLU

E-learning "Building a Sustainable National Greenhouse Gas Inventory for Agriculture, Forestry and Other Land Use"

Interactive tool to guide users to estimate AFOLU emissions following

2006 IPCC Guidelines at Tier 1

 Practical exercises to apply the acquired knowledge

 Transition from 1996 IPCC to 2006 IPCC

THANKS FOR THE ATTENTION

Contact: martial.bernoux@fao.org