

Soil Carbon Management for Climate Change Mitigation and Sustainable Development in Japan

Akiko Nagano

Environmental Policy Office, Ministry of Agriculture, Forestry and Fisheries (MAFF), Japan

Kazuyuki Yagi and Yasuhito Shirato

Institute for Agro-Environmental Sciences (NIAES), National Agriculture and Food Research Organization (NARO), Japan

Monitoring, Mapping and Estimation

(1) Long-term monitoring of agricultural soil

- A national program since 1979
- Sampling at about 4000 20,000 sites

Soil management record by questionnaires

- (2) Calculation models for soil organic C and GHG emission
- Change of soil carbon stock in cropland: Modified RothC Model
- Methane emissions from rice cultivation: DNDC-Rice Model
- Application of IPPC Tier 3 approach to Japanese National GHG Inventory Report from 2015

Future Projection of Agricultural Soil GHG Emissions

Scenario	C input	Paddy water management	N fertilizer	Mitigation potential vs. BAU (kt CO ₂ -eq./yr:minus:mitigation)					
				CO ₂ (Soil C)	CH ₄	N ₂ O	CO ₂ (Fossil fuel)	Total emissions	
Business as Usual	conventiona I	conventional	conventional	939	18,052	3,857	15,699	38,547	
Mitigation1	+10%	conventional	conventional	-903	+1,637	+471		+1,205	
Mitigation2	+10%	Extend MSD*	conventional	-903	-1,316	+471		-1,748	
Mitigation3	+10%	Extend MSD*	-10%	-903	-1,316	+234	4.0050/2020	-1,985	
*MSD: Mid-season drainage					Average of 2014-2050 (per year) Average of two climate change scenarios				

- Results suggest that increasing soil C can decease CO₂ emissions.
 However, it will increase CH₄ emissions from rice cultivation and N₂O emissions from fertilizer application.
- Therefore, it is necessary to combine mitigation options for CH₄ and N₂O to those for soil CO₂ in Japanese agriculture.
- Similar stories are expected in other Asian countries where intensive rice cultivation and nitrogen fertilization are conducted

MIRSA Project

(Greenhouse Gas <u>Mitigation in Irrigated Rice Paddies in Southeast Asia</u>)

Research project funded by MAFF, Japan, from 2013 to 2018
 Aiming at assessing the feasibility of GHG mitigation through water saving techniques (AWD*) in irrigated rice fields
 Results show effectiveness of AWD to reduce CH₄+N₂O emissions