

The Role of CCS in Mitigation Strategies

June 7, 2013

Trygve U. Riis, Chairman Technical Group, CSLF

CSLF Overview

Mission

An international initiative focused on improved cost-effective technologies for the separation and capture of carbon dioxide for its utilization and long-term safe storage

Purpose

Make technologies broadly available internationally; Identify and address wider issues

23 members

New Zealand

Poland

Norway

Korea

<u>___</u>

Mexico

Netherlands

Germany

France

Carbon Sequestration leadership Forum www.cslforum.org Global energy demand is increasing

Source: IEA World Energy Outlook, 2012

3

Source: IEA, Energy Technologies Perspectives, 2012

 Post-combustion CO₂ capture
Fossil fuel or biomass is burnt normally and CO₂ is separated from the exhaust gas
Fossil fuel or biomass is converted to a mixture of hydrogen and CO₂, from which the CO₂ is separated and hydrogen used for fuel
Oxy-combustion CO₂ capture
Oxygen is separated from air, and fossil fuels or biomass are then burnt in an atmosphere of oxygen producing only CO₂ and water

At the present time, none of the options is superior; each has particular characteristics making it suitable in different power generation applications

Carbon Sequestration leadership forum www.cslforum.org Industrial applications of CCS

- Some industrial processes produce highly concentrated CO₂ vent streams; capture from these "highpurity" sources is relatively straightforward
- Other industrial applications require additional CO₂ separation technologies to concentrate dilute streams of CO₂
- The same CO₂ separation technologies applied in power generation can be applied to industrial sources

CO₂ storage works – 17 years on Sleipner, 1Mt/y

Sleipner from 1996

Snøhvit from 2007

RCSP Phase III: Development PhaseCore Sampling

TakenLarge-Scale Geologic Tests

æ

Injection Targets - minimum planned volumesTwo ongoing RCSP Injection Projects

	Partnership	Geologic Province	Storage Type
1	Big Sky	Sweetgrass Arch- Duperow Formation	Saline
2	MGSC	Illinois Basin- Mt. Simon Sandstone	Saline
3	MRCSP	Michigan Basin- St Peter SS or Niagaran Reef	Saline/Oil
4	PCOR	Powder River Basin- Muddy Formation	Oil Bearing
5		Alberta Basin- Sulphur Point Formation	Saline
6	SECARB	Interior Salt Basin- Tuscaloosa Formation	Oil/Saline
7		Interior Salt Basin- Paluxy Formation	Saline
8	SWP	Wasatch Plateau- Navajo Sandstone	Saline
9	WESTCARB	Regional Characterization	TBD

Most straightforward and well-known step in the CCS chain. Pipeline and ship (or barge) are the only practical options at scale.

In 2010, over 60 $MtCO_2$ were transported through a 6 600 km pipeline network in the United States.

Cost of transport is generally low, but is a function of distance, capacity, and terrain.

Transport by ship or barge generally more expensive than by pipeline over short distances.

CCS is cost competitive

Levelised cost of electricity of low-carbon technologies and conventional power generation

Source: GCCSI: The costs of CCS and other low-carbon technologies, 2012, 2012

Challenges

- Demonstration plants
 - Demonstration plants are required to gain experience and bring cost down.
 - Requires public funding which is hard to find.
- Market incentives
 - Market incentives for CCS is lacking.
 - Industry reluctant to invest because of lack of a market for CCS.

Challenges

CCS in Developing Countries

- An increasing portion of world's GHG emissions comes from the developing world.
- There is a scarcity of resources and expertise.
- Financing challenges are amplified in developing countries.
- Public awareness
 - Safe CO₂ storage has been demonstrated, but lack of public awareness has lead to scepticism towards CCS.

South African CO₂ Storage Project - 150Gt theoretical level:

Recommendations

- Funding for demonstration plants must be made available.
- Market incentives for CCS must be established at a level similar to renewable energy sources.
- CCS must be included as a viable technology in international climate agreements.
- Information campaigns must be established to ensure public awareness.

Key messages

- CCS is a key technology to meet CO₂ emission reduction targets.
- CCS is a cost competitive technology.
- Safe CO₂ storage has been demonstrated.
- Meeting emission reduction targets will be more expensive and probably unfeasible without CCS.

C Q Sequestral

Meeting the Challenges Ahead

Coming Soon

2013 CSLF Technology Roadmap