Carbon dynamics in the Congo Basin 1996-2007

Lee White Ludovic Ngok Jean-Remy Makana

Forest change through the Iron Age:

- Arrival of the banana and oil palm c. 2,600BP / development of iron smelting result in huge population growth
- Starting around 550 AD a dramatic population crash affected the entire region, and over the next 5-600 years natural re-growth created most of today's rainforests.
- 1250 1300 AD human population crash in SW Nigeria results in forest regeneration creating the "finest mahogany forests in the British Empire"
- c.1850, tribal warfare results in regrowth of Gola
- 1900 rinderpest (W. Africa) and "regroupement" (C. Africa) initiates forest regrowth – producing Gabon's Okoumé forests.

The African rain forests in 2000

	(000ha)	A A A A A A A A A A A A A A A A A A A		
Cameroun	21,436	Street Star	1 Contractor	C. A. Start S.
Rép. du Congo	25,914	Car + Salar	10 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- Aline -
Rép. Dem. du Congo	124,566			
Rép. Gabonaise	21,190			
Guinée Equatoriale	1,843	A STAT		
RCA	8,227			Sale of
Afrique	235,910			

Mean Annual C0₂ accumulation: 1.8T / ha / year

Some Protected Landscapes ?up to 14T / ha / year

Deforestation in the African rain forests

Deforestation vs degradation

OFAC

Meeting REDD - COMIFAC, Paris, 10-11 March 2008

Savanna colonisation

Vertical projections of all canopies of trees and lianes with dbh>5 cm in 40x20m plots in burnt savanna, unburnt savanna, colonising, monodominant, Marantaceae and mixed Marantaceae forest types.

(clockwise from top left)

Vegetation Carbon Content of Gabon (Saatchi et al. 2001)

Carbon tons/ha 0-10 10-20 20-40 40-80 80-100 101-120 121-140 140-160 >160

NASA/JPL NASDA/GRFM JRC/SAI WCS/Gabon

Radar Backscatter Derived Biomass Tropical Forest (Africa) Mitchard et al. 2008 ALOS PALSAR Data

Assessment of Biomass Change Measurement from Disturbance and Recovery (ALOS & JERS-1)

a) JERS 1996 biomass class image

b) ALOS 2007 biomass class image

c) Change, in standard deviations

	Minimum spatial scale at which change can be detected annually			Minimum spatial scale at which change can be detected decadally		
Biomass Range	±1 Mg ha ⁻¹ yr ⁻¹	$\pm 5 \text{ Mg ha}^{-1} \text{ yr}^{-1}$	$\pm 10 \text{ Mg ha}^{-1} \text{ yr}^{-1}$	$\pm 1 \text{ Mg ha}^{-1} \text{ yr}^{-1}$	±5 Mg ha ⁻¹ yr ⁻¹	$\pm 10 \mathrm{Mg} \mathrm{ha}^{-1} \mathrm{yr}^{-1}$
$< 100 { m Mg ha}^{-1}$	1 km	200 m	100 m	100 m	25 m	12.5 m
100-200 Mg ha ⁻¹	2.5 km	500 m	250 m	250 m	50 m	25 m
$> 200 { m Mg ha}^{-1}$	4 km	800 m	400 m	400 m	100 m	50 m

Saatchi et al., 2008

Results of preliminary change detection using satellite L-band radar data over Lope National Park

Edward Mitchard edward.mitchard@ed.ac.uk Sassan Saatchi saatchi@congo.jpl.nasa.gov Lee White lwhite@uuplus.com

Long-term plot data from SEGC database / Dr. Kath Jeffery

1. JERS 1996 to biomass regression

- Calculated biomass using Chave et al. 2005 equation (calculated site-specific DBHheight alometric equations where tree height wasn't measured)
- Used data from:
- 110 plots (20 x 40 m) measured c. 1994
- SEGC transect, 5 km long, cut up into 50 x 50 m sections
- Compared to backscatter from JERS 1996 data taken in 1996 (3 by 3 boxsearch)

 $r^2 = 0.52$

p < 0.0001

 $Sigma^0 = -13.66 - 0.223(ln(x)) + 0.1541(ln(x))^2$

2. ALOS 2007 to biomass regression

- Calculated biomasses as before for 8 plots (20 x 40 m) with re-measures in 2005
- Added data from 12 suspected unchanged area (forest and savanna)
- Regressed against HH and HV, but found strongest relationship using just HV (all HH and the In(HV) squared terms insignificant)

$$r^2 = 0.94$$

 $p < 0.0001$
Sigma⁰ = -34.67 + 2.9527(ln(x))

	0 - 5	Mg
	5 - 50	not
	50 - 100	app
	100 - 2000	divi(
	200 - 400	can
	400 - 600	
	> 600	

Mg ha⁻¹ (biomass, not carbon – approximately divide by two to get carbon)

Change ratio produces a normal distribution with values between -1 and 1, where 0 is no change. Subdivide this with standard deviations to produce the above change map. Note done at 1 km squared resolution, to reduce noise and geolocation errors, whereas original biomass maps are both at 25 m resolution. Atelier REDD COMIFAC 10-11 mars 2008 - Paris Inventaires d'aménagement - INTERPRÉTATION Répartition de la ressource Répartition de l'Ohia (Celtis Mildbraedii) Dana Doctor and The Dectoral 0000000 COLORED DO CHERRY CONTRACTOR TO DE LO COMPANY COLUMN TO ME AND ADDR 0 kilomètres 92 Densité sur l'UFA par classes de diamètre 0.18 (pieds/ha) 0.18 0.14 2.12 Eleptiants (crottes / km) Parcelles 0.1 Kilomètres Limites de l'UFA 0.08 Densité 0.06 2 - 2.164 Stratification végétale 0.04 2.164 - 4.275 Forêt claire 6.68 4.275 - 6.455 0 Forêt dense 6.455 - 8.566 Forêt marécageuse 12 13 14 18 18 17 TEREA Savane 0 8.566 - 14.002

Réseau COMIFAC . . .

- The UNFCCC focal points in the COMIFAC region plan to establish a regional network including all initiatives to evaluate the carbon balance in the region
- It will include all permanent plots and oneoff vegetation studies as well as forestry inventory data
- We plan a 1996-2007 change analysis to be finalised before Copenhagen

Réseau COMIFAC . . . Needs:

- All actors (donors, research institutes, researchers . . .) to pool resources into common analysis
- Wall-to-wall ALOS mosaic for 2007, and ?2008, 2009, 2010
- Detailed analysis of carbon balance in undisturbed forests, different logging scenarios, shifting cultivation mosaic

Lessons from West Africa

