Global Observation of Forest and Land Cover Dynamics

Building national forest carbon monitoring capabilities for REDD

Martin Herold
GOFC-GOLD Land Cover Office, FSU Jena, Germany
www.gofc-gold.uni-jena.de
Activities of the REDD working group

- GOFC-GOLD working group est.
 - 1st GOFC-GOLD workshop
 - GTOS/GOFC report
 - 2nd GOFC-GOLD workshop
 - 3rd GOFC-GOLD workshop
 - GTOS submission I
 - ED/GOFC SBSTA side event + booth
 - ESA/GOFC side event
 - ESA/GOFC-GOLD side event
 - TNC/WINR/GOFC-GOLD side event
 - GTOS/GOFC-GOLD side event
 - Subm. of view by parties I

- COP11 Montreal: SBSTA 24
- COP12 Nairobi: SBSTA 26
- COP13 Bali: SBSTA 28
- COP14 Poznan: SBSTA 30

- 1st SBSTA workshop
- 2nd SBSTA workshop
- 3rd SBSTA workshop
- Subm. of view by parties II
- Subm. of view by parties III + IV

- 2005 2006 2007 2008 2009
- GOFC-GOLD
Version COP13.2 includes:
- Edits from comments received through international review process
- Updated sections, i.e. on fire monitoring, accuracy assessment, national forest inventories …
Sourcebook objectives

1. to provide transparent methods that are designed to produce estimates of changes in forest area and carbon stocks from deforestation and degradation
 ➢ in a format that is user-friendly

2. to complement the IPCC GPG-LULUCF (2003) and IPCC Guidelines-AFOLU (2006) by providing additional explanation, clarification and enhanced methodologies for obtaining and analyzing key data

3. to support REDD early actions, capacity building and readiness mechanisms on national level
Sourcebook: Table of content

1. **Purpose and Scope of the Sourcebook**

2. **Issues and Challenges**

3. **Guidance on Monitoring of Gross Changes in Forest Area**
 - Monitoring of Gross Deforestation
 - Monitoring of Forest Degradation
 - Fire observations
 - Accuracy assessment and area estimates

4. **Estimation of Carbon Stocks**
 - Overview of carbon stocks, and issues related to C stocks
 - Which Tier Should be Used?
 - Stratification by Carbon Stocks
 - Estimation of Carbon Stocks of Forests Undergoing Change
 - Uncertainty

5. **Methods for estimating CO2 Emissions from Deforestation and Forest Degradation**
 - Linkage to 2006 IPCC Guidelines
 - Organization of this Chapter
 - Fundamental Carbon Estimating Issues
 - Estimation of Emissions from Deforestation and Forest Degradation
 - Estimation of uncertainties

6. **Guidance on Reporting**
 - Issues and challenges in reporting
 - Overview of reporting principles and procedures
 - What are the major challenges for developing countries?
 - The conservativeness approach
Implementation remarks

1. Building a national forest carbon monitoring system is a process (that can start now):
 - Assessment of existing national capacities and available data
 - Methods and guidance exist

2. Capacity building as key factor for “readiness phase”:
 - Technical monitoring capabilities
 - IPCC compliant estimation, accounting and reporting

3. Start conservative with motivation to improve monitoring system over time
Principles for Estimation Carbon Emissions

1. Overview of current principles:
 Transparency, Consistency, Comparability, Completeness, Accuracy

2. Main challenges for developing countries:
 Evidence suggest that many countries will encounter difficulties in fulfilling the principles of completeness and accuracy of estimates.

Conservativeness approach:
when accuracy and precision cannot be achieved, the reductions in emissions should not be over-estimated (or at least the risk of overestimating should be minimized)
Relevance of conservative estimates

- Conservativeness is already in the Kyoto Protocol (e.g. adjustment under Art. 5.2 KP, CDM, possibility to omit a pool)
- SBSTA 28 included for further consideration:
 - “Means to deal with uncertainties in estimates aiming to ensure that reductions in emissions or increases in removals are not over-estimated”

Not a punitive correction of REDD estimate, but opportunity to:

- Increase the credibility of uncertain REDD estimates
- Reward the quality of the estimates: more complete/accurate likely translate in higher REDD estimates.
- Allow flexible monitoring requirements: if conservativeness is satisfied, Parties could choose the level of accuracy to reach.
- Stimulate a broad participation, i.e. allowing to join the REDD mechanism even without very complete / accurate estimates.
- Help the comparability of estimates across countries
Building national capabilities

<table>
<thead>
<tr>
<th>Important components</th>
<th>Practical considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREST AREA CHANGE</td>
<td>Primary source: Landsat-type satellite data</td>
</tr>
<tr>
<td>Deforestation</td>
<td>Starting point for historical assessment 1990-2005 (3 time steps minimum)</td>
</tr>
<tr>
<td></td>
<td>Build basic satellite data proc. capabilities</td>
</tr>
<tr>
<td>Monitoring of forest degradation</td>
<td>Relevance and characteristics for human-induced carbon emissions</td>
</tr>
<tr>
<td>Forest fire and burned area</td>
<td>Definition of suitable monitoring system</td>
</tr>
<tr>
<td>Accuracy assessment</td>
<td>Using best/transparent methods and efforts for continuous improvement</td>
</tr>
<tr>
<td></td>
<td>Prepare for statistically robust approach</td>
</tr>
<tr>
<td>CHANGE in CARBON STOCKS</td>
<td>Primary source: ground/inventory data</td>
</tr>
<tr>
<td>Existing stratifications and forest</td>
<td>Inventory of available data</td>
</tr>
<tr>
<td>carbon estimates</td>
<td>Decide on carbon pool/TIER level to report</td>
</tr>
<tr>
<td>Towards improved carbon stock change</td>
<td>New inventory including other carbon pools</td>
</tr>
<tr>
<td>estimations</td>
<td>Stratification in relevant areas/forest types</td>
</tr>
<tr>
<td>ACCOUNTING & REPORTING</td>
<td>Provide conservative estimates</td>
</tr>
</tbody>
</table>
Building national capabilities

<table>
<thead>
<tr>
<th>Important components</th>
<th>Practical considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREST AREA CHANGE</td>
<td>Primary source: Landsat-type satellite data</td>
</tr>
<tr>
<td>Deforestation</td>
<td>Starting point for historical assessment 1990-2005 (3 time steps available)</td>
</tr>
<tr>
<td></td>
<td>Build basic satellite data proc. capabilities</td>
</tr>
</tbody>
</table>

FOREST AREA CHANGE

- **Deforestation**
 - Starting point for historical assessment 1990-2005 (3 time steps available)
 - Build basic satellite data proc. capabilities

CHANGE in CARBON STOCKS

- Primary source: ground/inventory data
- Existing stratifications and forest carbon estimates
- Inventory of available data
- Decide on carbon pool/TIER level to report
- Towards improved carbon stock change estimations
- New inventory including other carbon pools
- Stratification in relevant areas/forest types

ACCOUNTING & REPORTING

- Provide conservative estimates
Monitoring deforestation at national scale

Starting point to develop more detailed monitoring system:

- Build satellite data processing capacities and data archive
- Motivation to use more detailed data than 1990-00-05
- Identify hot spots of forest loss to guide further surveys and field work on degradation and carbon accounting (i.e. stratification)
- Develop understanding of historical (spatial) processes and associated factors and drivers

Charge to Earth Observation Community:

- Capacities to use other useful data of evolving technologies (i.e. Radar ... new chapter in updated sourcebook)
- GEO is advancing global collaboration on monitoring forest carbon (http://www.earthobservations.org/meetings/meet_wss.html#past)
- GOFC-GOLD Regional Network Data Initiative
Building national capabilities

### Important components	Practical considerations
Monitoring of forest degradation
Forest fire and burned area | Relevance and characteristics for human-induced carbon emissions
Definition of suitable monitoring system
Change in forest areas remaining as forest (degradation)

Caused by:
- Selective logging
- Forest fires
- Forest use (wood, agriculture)
- ...

Creates a complex environment:
- Undisturbed forests
- Canopy gaps
- Exposed soils
- Dead vegetation

Can be precursor to:
- Deforestation
- Further disturbances

Souza Jr. and Roberts (2005) - IJRS

Ikonos Image – Paragominas, PA

GOFC-GOLD
Direct approaches to detect forest degradation

<table>
<thead>
<tr>
<th>Highly Detectable</th>
<th>Detection limited & increasing data/effort</th>
<th>Detection very limited</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Deforestation</td>
<td>• Selective logging</td>
<td>• Harvesting of most non-timber plants products</td>
</tr>
<tr>
<td>• Forest fragmentation</td>
<td>• Forest surface fires</td>
<td>• Old-mechanized selective logging</td>
</tr>
<tr>
<td>• Recent slash-and-burn agriculture</td>
<td>• A range of edge-effects</td>
<td>• Narrow sub-canopy roads (<6-m wide)</td>
</tr>
<tr>
<td>• Major canopy fires</td>
<td>• Old-slash-and-burn agriculture</td>
<td>• Understory thinning and clear cutting</td>
</tr>
<tr>
<td>• Major roads</td>
<td>• Small scale mining</td>
<td>• Invasion of exotic species</td>
</tr>
<tr>
<td>• Conversion to three monocultures</td>
<td>• Unpaved secondary roads (6-20-m wide)</td>
<td></td>
</tr>
<tr>
<td>• Hydroelectric dams and other forms of flood disturbances</td>
<td>• Selective thinning of canopy trees</td>
<td></td>
</tr>
<tr>
<td>• Large-scale mining</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(using Landsat-type observations)

Peres et al., (2006) TREE
Change in forest areas remaining as forest (degradation)

- Based on significant degradation processes present - country may decide on suitable observation approach

- Direct detection of degradation processes (canopy damage):
 - Landsat-type data with annual observations
 - Very high-resolution datasets (IKONOS type)
 - Hot spot sampling approach maybe effective

- Indirect approaches:
 - Detecting required infrastructure and its changes (roads, log landings)
 - Concept of intact versus non-intact forests

- Inventory based approaches (field surveys) and forest statistics (i.e. logging concessions and harvest estimates)

- Operational fire monitoring systems
Example for indirect approach

Landsat 1990

Landsat 2000
Fire observations and their usefulness for national REDD implementation

<table>
<thead>
<tr>
<th>Approach</th>
<th>Information</th>
<th>REDD objective</th>
<th>Suitability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-fire</td>
<td>Early warning system</td>
<td>Protect forest areas at risk and address leakage and permanence</td>
<td>Most suitable for countries with significant amount of wildland fires and known fire regimes</td>
</tr>
<tr>
<td>Active fire</td>
<td>Hot spot satellite data</td>
<td>Fire relief and active emissions reduction Support of in-situ actions</td>
<td>Most suitable for countries with large number of small-scale deforestation fires</td>
</tr>
<tr>
<td>Post-fire</td>
<td>Burned area estimates</td>
<td>Support estimation of areas of deforestation and degradation</td>
<td>All countries with forest loss due to fire</td>
</tr>
</tbody>
</table>
EXAMPLE APPLICATIONS

- 1 year of composite of MODIS burned areas, superimposed on surface reflectance to provide geographic context.
- Burned area statistics for the same period, for vegetation type.

http://modis-fire.umd.edu/MCD45A1.asp
Contact: Luigi Boschetti <luigi@hermes.geog.umd.edu>
<table>
<thead>
<tr>
<th>Important components</th>
<th>Practical considerations</th>
</tr>
</thead>
</table>
| Accuracy assessment | Using best/transparent methods and efforts for continuous improvement
| | Prepare for statistically robust approach |
Need for accuracy assessment

- IPCC GPG: uncertainties should be quantified and reduced as far as practicable
- Accuracy assessment using a sample of higher quality data as integral part of national monitoring/accounting
- 2 different objectives:
 - Assess accuracy and adjust area estimates (if biased)
 - Provide confidence intervals for conservative estimates
- For REDD - accuracy assessment as process:
 - Reduce sources of error by using suitable data characteristics and preprocessing, and consistent and transparent mapping
 - Using best efforts and continuous improvement while working towards a robust assessment in the future
Accuracy assessment implementation

Capacity building

Reference data interpretation

Discussing deforestation history

In situ visits

Proportion of map area [%]

- 0,60
- 0,55
- 0,50
- 0,45
- 0,40
- 0,35
- 0,30
- 0,25
- 0,20
- 0,15
- 0,10
- 0,05
- 0,00

deforest 90-00
Practical considerations

- Robust approach may not be achievable or practicable i.e. monitoring historical land changes in developing countries
- Verification should build confidence, improve knowledge of potential errors and continuously enhance estimates
- If no thorough accuracy assessment is practicable:
 - apply the best suitable mapping method in a transparent manner
 - consistency assessment allow some estimation of the quality
 - work backwards from most recent time (more reference data)
- Information without a proper statistical sample can be useful in understanding the basic error structure:
 - Confidence values provided by interpretation or classification
 - Qualitative examinations/comparison with other maps
 - Systematic review and judgments by local and regional experts
 - Comparisons with non-spatial and statistical data
Building national capabilities

<table>
<thead>
<tr>
<th>Important components</th>
<th>Practical considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CHANGE in CARBON STOCKS

<table>
<thead>
<tr>
<th>Existing stratifications and forest carbon estimates</th>
<th>Primary source: ground/inventory data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inventory of available data</td>
</tr>
<tr>
<td></td>
<td>Decide on carbon pool/TIER level to report</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Towards improved carbon stock change estimations</th>
<th>New inventory including other carbon pools</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stratification in relevant areas/forest types</td>
</tr>
</tbody>
</table>
Carbon stock change from deforestation/degradation

<table>
<thead>
<tr>
<th>Tiers (C pool change)</th>
<th>Certainty</th>
<th>REDD</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. IPCC default values:</td>
<td></td>
<td>Simple & conservative starting point</td>
<td></td>
</tr>
<tr>
<td>➢ biomass in forest types by region and ecol. stratification, carbon fraction etc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Country specific data:</td>
<td></td>
<td>Motivation to improve monitoring system over time</td>
<td></td>
</tr>
<tr>
<td>Inventories (date, focus)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecological monitoring plots</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project studies/field samples</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Full inventory of C stocks:</td>
<td></td>
<td>Accurate & established emissions monitoring</td>
<td></td>
</tr>
<tr>
<td>➢ Comprehensive assessment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>➢ Consider different carbon pools and assessment for all associated changes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conservative estimates:
1) **Incomplete**: a pool which is a source due to deforestation (e.g. soil) may be omitted
2) **Uncertain**: use confidence intervals
Moving from Tier 1 to Tier 2

TIER 1
- tropical montane
- tropical moist
- tropical wet

TIER 2
- low
- high

Forest carbon

GOFC-GOLD
Remote sensing support for carbon estimation

- Direct biomass mapping from space remains a challenge
- Existing capabilities:
 - Satellite observation may help to map some specific forest types (i.e. mangroves, plantations, evergreen / deciduous etc.)
 - Targeted remote surveys to support carbon monitoring:
 - Very high resolution satellite or airborne data of air-photo quality to assist field surveys
 - Sensitivity of LIDAR and long-wave RADAR observations (few regional examples)
 - Integration of in-situ and satellite data for large scale biomass mapping
 - Direct estimation of emissions from fire radiative power
- Technologies are not operational globally but evolving
Building national capabilities

<table>
<thead>
<tr>
<th>Important components</th>
<th>Practical considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FOREST AREA CHANGE

Primary source: Landsat-type satellite data

- Deforestation
- Starting point for historical assessment
- 1990-2005 (3 time steps minimum)
- Build basic satellite data processing capabilities
- Monitoring of forest degradation
- Forest fire and burned area
- Relevance and characteristics for human-induced carbon emissions
- Definition of suitable monitoring system
- Accuracy assessment
 - Using best/transparent methods and efforts for continuous improvement
- Prepare for statistically robust approach

CHANGE in CARBON STOCKS

Primary source: ground/inventory data

- Existing stratifications and forest carbon estimates
- Inventory of available data
- Decide on carbon pool/TIER level to report
- Towards improved carbon stock change estimations
- New inventory including other carbon pools
- Stratification in relevant areas/forest types

ACCOUNTING & REPORTING

- Provide conservative estimates
Examples of conservativeness applied to REDD

1. Incomplete estimate: IF the area deforested decreased, a pool which is a source due to the deforestation (e.g. soil) may be omitted: the resulting estimate will not be complete but will conservative.

2. Uncertain estimate: similarly to Art. 5.2 of KP, proposal to use the confidence interval to be conservative.

3. Trend estimate: Instead of using the confidence interval of both periods (left), we propose to be conservative using the uncertainty of the emission reduction (IPCC: uncertainty of the trend, right).

(see sourcebook chapter 6)
Concluding remarks

1. Starting point to start process of building a national carbon monitoring & accounting system:
 • Methods and guidance exist
 • Start conservative with motivation to reduce uncertainties over time

2. Capacity building and engagement with national and international partners

3. Build databases and understanding of historical forest change and associated carbon emissions

4. Stimulate national REDD implementation strategy and activities
Sourcebook development

1. Updated draft available: www.gofc-gold.uni-jena.de/redd

2. Engagement with IPCC LULUCF/AFOLU expert panel:
 - Background paper on satellite remote sensing in LULUCF sector

3. Engagement with Group on Earth Observations (GEO) activities to improve forest monitoring for tracking carbon (2009-2011 work plan task)

4. Further methods and technical details to be specified and added with evolving negotiations and decisions

5. Updated & revised version for COP 14
 - new sections (i.e. on evolving technologies)

 - www.gofc-gold.uni-jena.de
Acknowledgement

Sponsors of the Global Terrestrial Observing System:

Sourcebook authors:

Core authors: Frederic Achard, Sandra Brown, Ruth De Fries, Giacomo Grassi, Martin Herold, Danilo Mollicone, Carlos Souza Jr.

Contributing authors: Barbara Braatz, Ivan Csiszar, Diane Davies, Bill de Groot, Sandro Federici, Nancy Harris, Suvi Monni, Devendra Pandey, Tim Pearson, David Shoch, Curtis Woodcock

Support for GOFC-GOLD REDD working group and Sourcebook preparation:
Web resources

- **GOFC-GOLD REDD sourcebook:**
 - http://www.gofc-gold.uni-jena.de/redd
- **Global Terrestrial Observing System (GTOS):**
 - http://www.fao.org/gtos/
- **GOFC-GOLD:**
- **GOFC-GOLD land cover project office:**
 - http://www.gofc-gold.uni-jena.de/