

Department of the Environment and Water Resources

Australia's National Carbon Accounting System

A Case Study of *Spatially Explicit* National Monitoring

National Carbon Accounting System

Aim: complete accounting and forecasting for human-induced sources and sinks from land-based systems ... an optimum response to the UNFCCC and its instruments.

 The Australian Government has invested approximately \$4M AUD per year since 1998 to develop a National Carbon Accounting System.

Key issues from the 'Aim'

- Complete all lands, carbon pools gases and activities at all scales
- Accounting and forecasting retrospective and predictive
- UNFCCC and instruments designed specifically for this purpose

Key design decisions

- Spatially explicit, through time-series remote sensing (wall-to-wall)
- Underpinned by a single 'process', mass balance, full cycle, C:N, ecosystems model
- Integrated one model application only for all purposes and scales
- Progressive 'build' by policy priority over several 4 year phases – deforestation 1st

Key features of implementation

- Informs and monitors policy formulation and implementation, does not attempt to 'make' policy
- Transparent publication and availability of data, tools and results
- Scientifically validated QA, QC, CIVP and peer review
- A research adopter, not researcher
- Outsourced private sector, institutions, governments
- Any secondary benefits not to compromise primary goals

Land Representation

- Land cover change (wall-to-wall national time series of remote sensing at 25m)
- Bio-physical inventory mapping, e.g., soil
- Climate surfaces developed from weather station data
- Land use and management from remote sensing and survey

Department of the Environment and Water Resources

Deforestation over time

Deforestation over 30 years in 14 'snapshots' for an area of about 20 million hectares

Department of the Environment and Water Resources

Department of the Environment and Water Resources

Emissions estimation

Spatial by grid analysis using modelProject by wizard to project results

Across a landscape/country

For a project

Department of the Environment and Water Resources

Benefits

- a single system reconciles 'project' and 'national' accounts
- removes potential for sampling uncertainty in monitoring of land use change
- predictive and spatially explicit to assess possible consequence of particular actions
- transparent and verifiable at all scales

Wider Implementation

- Aust. has a large land area and relatively small population – remote sensing is a cost effective solution
- Monitoring has become easier with new technologies and instruments
- Costs are reducing for Aust. ~\$750,000 per national update
- National time-series monitoring is widely achievable

