UNFCCC WORKSHOP ON REDUCING EMISSIONS FROM DEFORESTATION IN DEVELOPING COUNTRIES, 7 - 9 March, 2007, Cairns, Australia

Practical experiences on policies and incentives to reduce deforestation in dev. countries (& getting the basics right)

Arild Angelsen

Associate Professor, Norwegian University of Life Sciences (UMB), As, Norway &

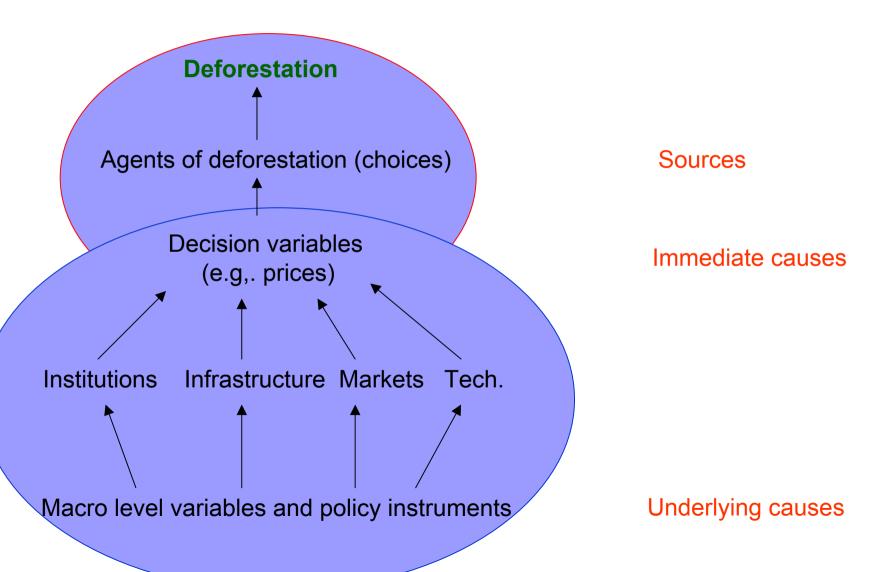
Senior Associate, Center for International Forestry Research (CIFOR), Bogor, Indonesia &

Visiting scholar, University of Western Australia, Perth

arild.angelsen@umb.no

vvny are policies and incentives important?			
Approach	National targets	Policies & incentives (P&I	
Example	Main Kyoto	CDM	
Key issues	Setting baselines at national (regional) level! Hot air vs. acceptability	Assessing net impact: Baselines, leakage, additionality.	
	A ((! 1.1 1.	A (1100 ())	

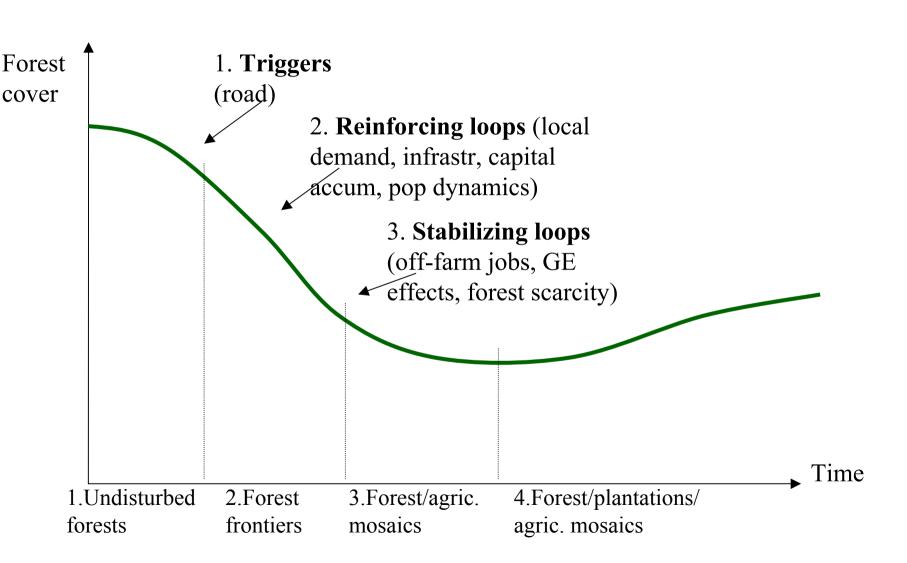
At national level Measurement At different scales, and for


specific P&I of change Role of P&I For agreement: Only Key to identify P&I, develop indirect: countries choose criteria & measure impact

best P&I. Advisory role? Pros Easier to deal with more Broad & country-specific localized effects policies applied

Hard to set national Cons Problems of local baseline. baseline (& monitor leakage and additionality change)

A deforestation framework


(Kaimowitz and Angelsen 1998)

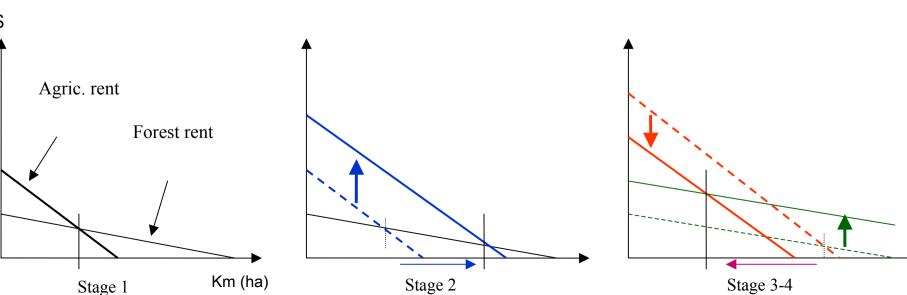
Some implications

- The importance of knowing at which level we are in the analysis/discussion
 - "Defor caused by agric expansion, inappropriate technologies, misguided macroeconomic policies and foreign debt"
- Must link land users' decisions (decision parameters) with policy variables, and be consistent
 - "Defor caused by poverty and devaluation that made agric more profitable"
- Increasingly difficult to predict deforestation effects as move down to underlying causes
 - A major challenge for making general policy recommendations!

The forest transition

What's driving the FT?

(Rudel et al 2005; Angelsen 2007)

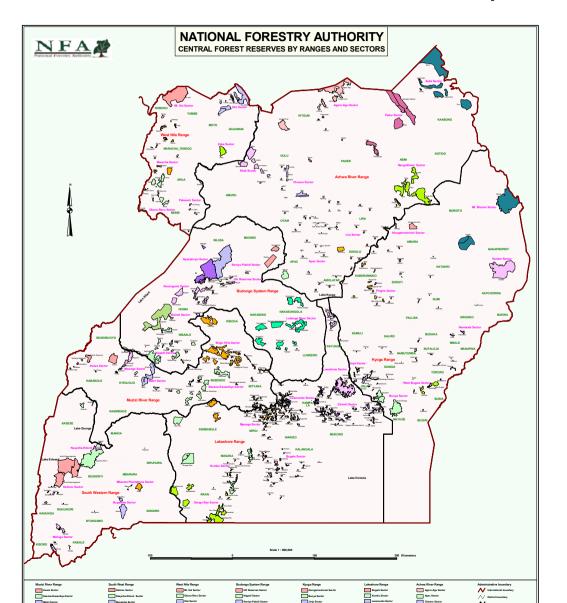

A von Thünen (1826) framework:

- 1. land use determined by land rent/profit (highest win)
- 2. rent depends on location (distance from centre)

```
Stage 2: agric rent ↑
```

Stage 3-4:

- 1. Economic development path (ag rent↓)
- 2. Forest scarcity path (forest rent ↑)

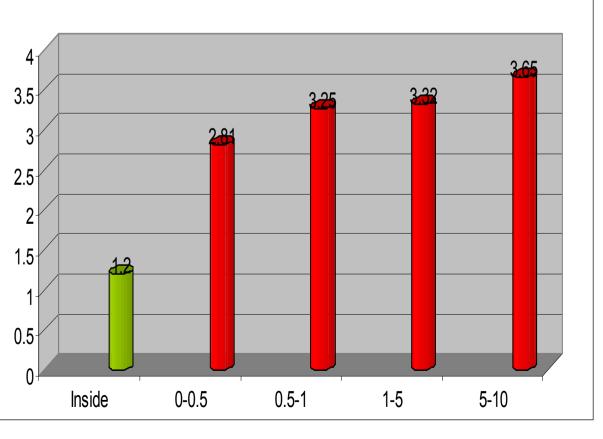

Key policy implications

- 1. How to slow down increase in agric rent?
 - Don't make frontier agric more profitable
- 2. How to speed up the economic development and thereby slow down agric rent?
 - Create alternative employment
- 3. How to speed up/induce forest scarcity
 - Create markets for forest products (but careful)

Difficulties in using policies

- Defor the aggregate outcome of decisions made by millions of land users, responding to profitable opportunities for forest conversion
 - profitability is determined by underlying causes, which are not easy to apply as policies made on non-forest considerations (e.g., exchange rate)
- Often a trade-off between poverty reduction & forest conservation
 - win-lose appears to be the rule rather than exception (agric prices, roads)
- Defor in remote 'state-less' or 'state-thin' places
 - regulations and enforcement difficult/ineffective
 - high transaction costs

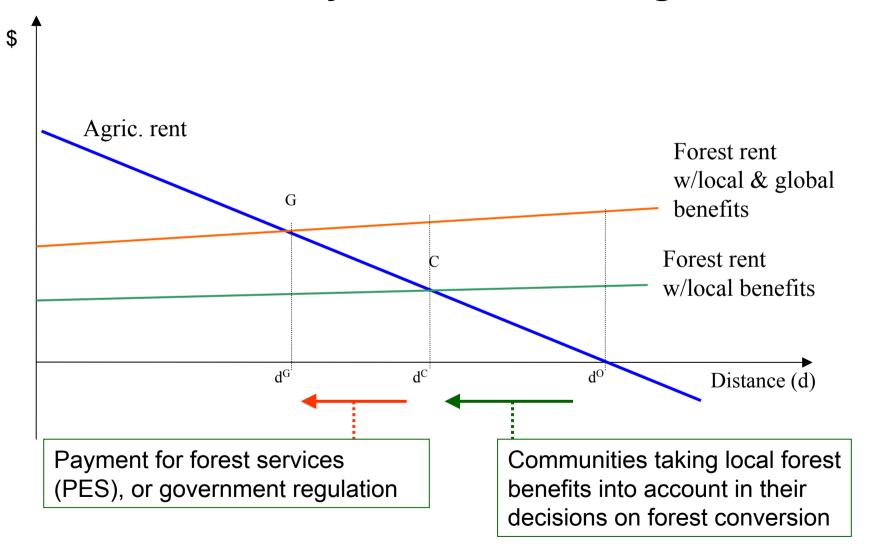
1. Conservation areas (example: Uganda)



- Very good economic performance (5-7 % pa)
- Population growth: 3.4 % pa
- 24 % forest cover
 - □ 70 % private
- Deforestation in 1990s: 2.45 % pa

Are parks and reserves effective?

(Babigumira and Angelsen 2007)


Deforestation rates 1990-2000 (% pa). Inside parks and reserves and in bufferzones (km)

Yes!

- Strong enforcement
- Methods to measure net impacts:
 - ☐ Passive protection (parks in remote areas?)
 - Leakage (more clearing outside)

2. Community forest management

Does CFM work?

- Emerging consensus:
 - □ Relatively successful in forest conservation
 - □ Relatively **un**successful in raising forest income
 - Ex. Malawi & Nepal: Higher forest income for nonmembers
- Why?
 - □ Driven by a conservation (& cost saving) agenda
 - The valuable stuff (timber) not handed to local communities
 - □ An incomplete reform
- Policies?
 - More authority
 - □ Get timber rights?
 - □ Link to other benefits

3. Land tenure: a critical distinction

1. Degree of (exogenous) tenure insecurity

Tenure security promotes higher investments and long term thinking:

- Tree planting
- Land improvements

Good for forest!

2. How land rights are acquired

Deforestation an investment and a means to acquire and/or strengthen land rights.

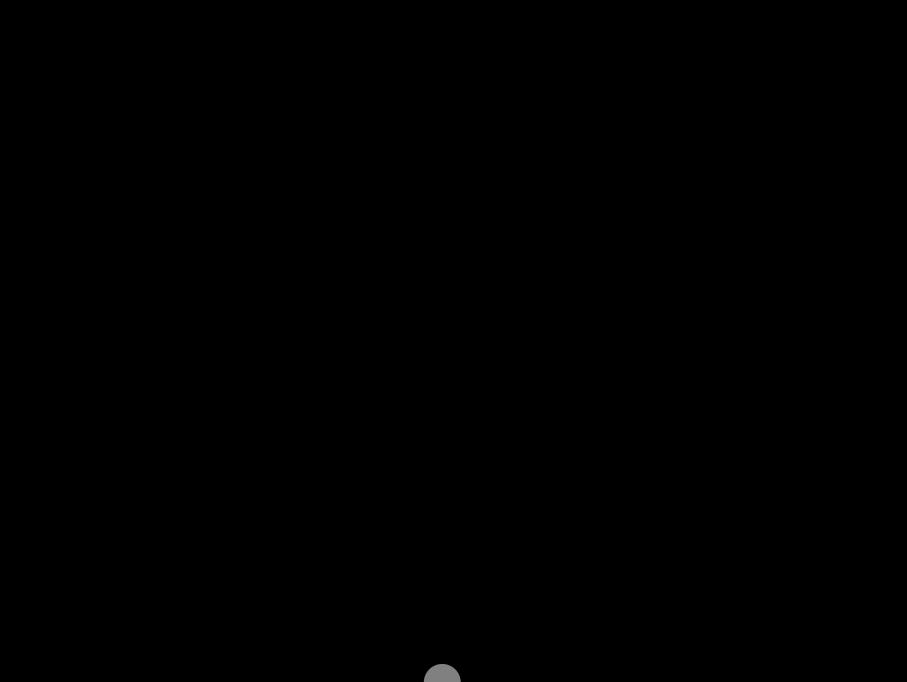
Higher tenure security promotes deforestation!

- Land reforms to enhance tenure security often promotes both cutting and planting of trees!
- Depends on stage in forest transition:
- 2. effect dominate early in the transition

4. New agric technologies

- Key questions to assess impact:
 - Does it make agric conversion of forest more profitable?
 - □ Does it change the **means** (access to labour and capital) of land users to clear forest?

Critical factors for the impact of tech change on deforestation (Angelsen and Kaimowitz 2001)


Reduced	Impact on deforestation	Increased
Intensive (high)	Labour and capital intensity	Saving (low)
Constrained (subs.)	Farmer characteristics	Well-off
Local	Output market	Global
Yield increasing	Technology	Cost saving
Local, segmented	Labour market	Mobile labour (migration)
Intensive (lowland)	Sectors experiencing tc.	Frontier areas (upland)
Global	Scale of adoption	Local
Short-term	Time horizon of analysis	Long term

Examples of good and bad (for defor) agric technologies

- Agric technologies → more deforestation
 - Commodity booms (banana, sugar, cocoa, palm oil, soy bean)
 - □ Livestock intensification in Latin America (casual effect reverse: the potentially forest saving technologies only adopted when forests are gone))
 - □ New technologies for frontier agric (possibly also agroforestry, e.g., rubber in Sumatra, Indonesia)
- Agric technologies → less deforestation
 - □ Irrigated, lowland agriculture, e.g. Green Revolution
 - □ Technologies for intensive systems, when farmers also involved in extensive ones, e.g., more intensive maize production vs. *chitemene* in Southern Africa

Concluding remarks

- Forest transition as a useful framework to understand (stages of) deforestation and policy choice:
 - agric rent
 - providing alternatives
 - □ induce forest scarcity
- Hard to state generally even qualitatively the defor impact of policies & incentives, let alone quantify the impact. Also highly country-specific.
 - □ If P&I approach: Focus on direct projects and specific policies, e.g., conservation areas (like A&R under CDM); cannot include broader (and more forceful policies)
 - An argument for a national target approach, but requires national baselines and good inventories and monitoring

