AWG-KP Pre-sessional Events Maritim Hotel, Bonn, 27th March, 2009

The Sectoral Approach to Analyze Global Mitigation Potential

Miyuki Nagashima

Systems Analysis Group Research Institute of Innovative Technology for the Earth (RITE)

DNE21+ Model and cases assumed

2

- Linear programming model (minimizing world energy system cost)
- Bottom-up and technology-rich model
- World divided into 54 regions
- Analyzing global reduction potential
- Analyzing reduction potential under the following cases

Case	Definition
echnology- ozen Case	 CO₂ intensity by sector is fixed at the level of 2005 This case is a hypothetical scenario to clarify emission reduction potential from current technology level.
egative-Cost- chieved ICA) Case	 Emissions Scenario where <u>all the emission reduction measures a</u> <u>negative costs</u> are achieved.

Marginal cost curve for Annex I countries in 2020

((CO2 in 2020)-(CO2 in 2005))/GHG in 2005

- Marginal abatement cost (MAC) curves differ among countries.
- MAC curve for Japan is relatively steep particularly at the cost below 100\$/tCO2 due to high energy efficiencies in most of the energy intensive sectors, which is driven by past investments

Emission Reduction Potential in 2020

- There exists large reductions potential at negative costs (3.9Gt) and relatively low-costs (<20\$/tCO2) (1.4Gt) in Annex I & OECD countries.
- These are around 60 % of the total reduction potential.
- Reduction potential in US, EU27 and Russia at marginal costs of below20\$/tCO2 (4.1Gt) accounts for about 80% of those in Annex I & OECD countries (5.3Gt)

Sectoral Emission Reduction Potential in 2020

- Large reduction potential at negative costs exists in every sector in Annex I & OECD countries.
- These reduction potential can be achieved by energy-saving measures.

Sectoral Emission Reduction Potential in 2020

0-50 \$/tCO2 □ Industry □ Transportation □ Residential&Commercial Power US Canada EU-27 Japan Australia NZ Russia Annex I & OECD 0% 20% 40% 60% 80% 100% CO₂ emission reduction share

- Around 70% of the reduction potential mainly exists in power sector in Annex I & OECD countries.
- This situation is same in most of the Annex I & OECD countries.

Conclusion (1/2)

- By introducing the two Cases, <u>Negative-Cost-Achieved</u>
 <u>Case</u> and <u>Tech.-Frozen Case</u>, emission reduction potential at negative costs can be estimated besides those at positive costs.
- Large reduction potential at negative costs still exists in various sectors in Annex I & OECD countries. Policies and measures for energy efficiency are the keys.
- Reduction potential at fairly low positive cost is quite large in power sector of Annex I & OECD countries.
 Low-carbon and non-carbon policies & measures in power sector are also important.

Conclusion (2/2)

- There exists larger reduction potential at negative and low cost in non-Annex I regions.
- <u>Cooperative measures</u> and actions between developed and developing countries would help to achieve the above reduction potential.

Thank you for your attention.