

UNDP NAMA finance case study

UNFCCC Asia Pacific Regional Workshop on NAMAs

Vientiane/Lao PDR, April 24, 2014 Presenter: Tobias Schmidt, ETH Zurich & Stanford University

Aims and Agenda

Aims

- Design two alternative NAMAs that both have the objective to attract private investment into 500MW of on-shore wind energy
- Compare both NAMAs in terms of their costs and effects

Agenda

- 1. The concept of LCOE
- 2. Introduction to the UNDP DREI tool
- 3. Case study
 - 1. Step 1: Modelling the Baseline
 - 2. Step2: Designing the cornerstone instrument NAMA
 - 3. Step 3: Designing the instrument package NAMA
 - 4. Step 4: Comparing both NAMAs
- 4. Discussion

1. LCOE – concept and formula (1)

- LCOE stands for "Levelized Cost of Electricity"
- LCOE is given in cost per unit of energy (e.g., USD/MWh)
- LCOE represents the constant unit cost over the entire life cycle of a plant (i.e., lifecycle costs), considering the financing costs

$$LCOE = \frac{\sum_{t=1}^{n} \frac{Expenditures_t}{(1+i)^t}}{\sum_{t=1}^{n} \frac{Electricity\ generated_t}{(1+i)^t}}{(1+i)^t}$$
n: lifetime
t: year
i: Discount rate

- If a plant owner is remunerated the LCOE, the plant operates exactly at the profitability threshold (NPV=0)
- ⇒ LCOE is a good concept to calculate Feed-in tariffs
 (a FIT should provide the LCOE and potentially a premium)
- ⇒ LCOE is a good indicator to compare technologies (even with different life times)
- \Rightarrow Commonly used by policy makers, planners, researchers and investors

1. LCOE – concept and formula (2)

- The discount rate in LCOE represents the financing costs
- In the model we use an equity perspective, hence the formula is more complicated

% Equity Capital * Total Investment + $\Sigma_{\tau=1}^{T}$		$(1 + Cost of Equity)^{x}$	
		ctricity Production, $*(1 - Tax Rate)$	
$\sum_{\tau=1}^{T}$ -	Σt=1	$(1 + Cost of Equity)^{\tau}$	
Where,			
% Equity Capital = portion of the investment	funded by equ	uity investors	
O&M Expense = operations and maintenance	expenses		
Debt Financing Costs = interest & principal pa	yments on de	bt	
Depreciation = depreciation on fixed assets			

Cost of Equity = after-tax target equity IRR

The model we use in this exercise has been slightly adjusted from the downloadable version

2. UNDP DREI Financial Tool

United Nations Development Programme

Our Work

Excel-based tool to compare the effects and costs of different policy • designs to support renewable energy technologies (on-shore wind power)

Our Perspective

Freely downloadable from www.undp.org/DRFI • 🔨 🐖 UNDP around the world 👻 🛛 About Us Publications News Centre Multimedia

Millennium Development Goals

Home > Research & Publications > Environment & Energy > Low-Emission Climate-Resilient Development >

Derisking Renewable Energy Investment introduces an innovative framework to assist policymakers to quantitatively compare the impact of different public instruments to promote renewable energy. The report identifies the need to reduce the high financing costs for renewable energy in developing countries is an important task for policymakers acting today. The framework is structured four stages; (i) risk environment, (ii) public instruments, (iii) levelised cost and (iv) evaluation. To illustrate how the framework can support decision-making ir practice, the report presents findings from illustrative case studies in four developing countries. It then draws on these results to discuss possible directions for enhancing public interventions to scale-up renewable energy investment

The framework is accompanied by a financial tool for policymakers in Microsoft Excel

English

Search UNDP

Download this Document Teport (156 pages)

Financial Tool

5

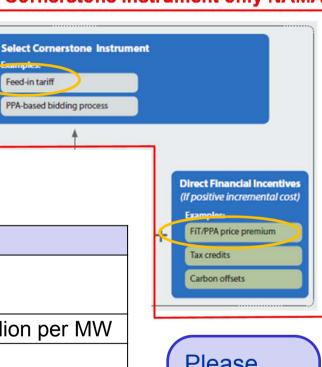
3. Case study – Introduction

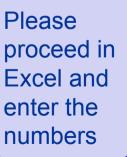
- You as a team are asked to assist Country X in designing a NAMA
- Electricity shortages, state-owned Electricity Supply Company (ESC) not in good state
- As there are good wind resources, the idea is to design a NAMA that attracts private sector investments into 500MW of on-shore wind power
- An important topic is to use scarce public resources effectively and efficiently
- Two alternative designs will be developed:
 - A cornerstone-instrument only NAMA
 - A public instrument package NAMA
- Both NAMAs shall be designed and compared regarding costs
 and effects
- We will use the DREI tool and proceed in 4 steps

3. Case study – Step 1: Modelling the baseline

	and an ta da aigna and	Input	Data
In order to design and		Current baseline energy	Hydro: 75%
	ompare NAMAs, a good	generation mix	Biomass: 10%
sta	arting point is to analyze		Diesel: 15%
the	e baseline and model its	Marginal baseline energy	
CO	osts	generation mix	
In the DREI tool please	As a percentage:	Hydro: 69%	
			Diesel: 31%
	se the "II. Inputs,		
	aseline Energy Mix" tab	Most recent 5 private sector	800MW Hydro (4.4 TWh/year)
_	nd enter the data from	investments in new	15 MW Diesel (0.1 TWh/year)
the	e table to the right into	generation:	100 MW Diesel (0.6 TWh/year)
the	e respetive yellow cells		50 MW Diesel (0.3 TWh/year)
			150 MW Diesel (0.9 TWh/year)
		Emission factors	
	asso proceed	Individual grid emission	Hydro: 0.000 tCO2/Mwhel
	ease proceed	factors:	Diesel: 0.700 tCO2/Mwhel
	Excel and		
er	nter the	Total marginal baseline grid	0.212 tCO2/Mwhel
nu	umbers	emission factor:	

3. Case study – Step 2:

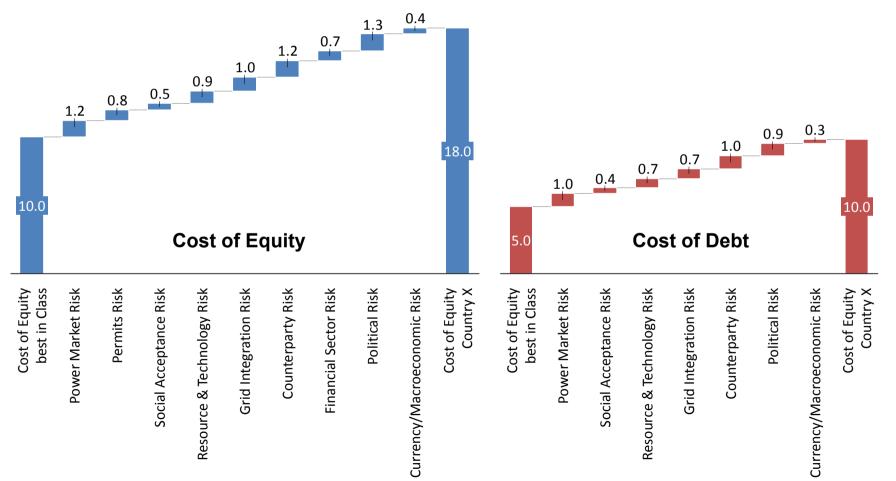

Designing the cornerstone instrument only NAMA


- Please design a NAMA in which you pick one cornerstone instrument: a feed-in tariff for wind
- In the DREI tool please use the "III. Inputs, Wind Energy" tab and enter the below data into the respective yellow cells
- Specifically refer to the "Cornerstone-only NAMA" columns

Input	Data
Estimated capacity factor for 500MW of wind	38%
energy	
Investment costs	USD 2 million per MW
Life expectancy of assets	20 years
Cost of equity	18%
Cost of debt	10%
Capital structure	70% debt/30% equity
Loan tenor	12 years
Corporate tax rate (effective)	25%
Administrative costs of the FiT over 20 years	USD 1.7 million

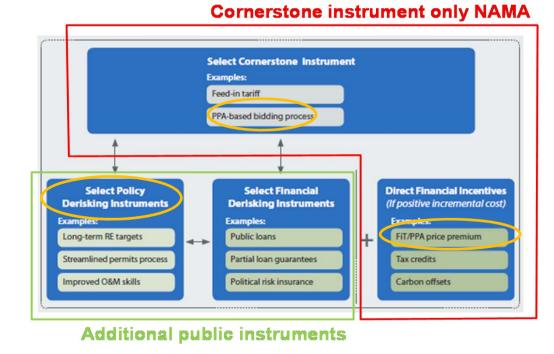
Cornerstone instrument only NAMA

Feed-in tariff



3. Case study – Step 3: The risk environment in Country X

- The investment environment of Country X suffers from many risks
- These drive the financing costs (see below)


Please proceed in Excel and enter the

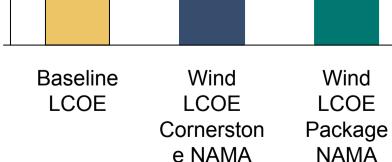
10

3. Case study – Step 3: Sus Sus Designing the public instrument package NAMA

• Please design a NAMA in which you select public instruments which complement the cornerstone instrument (FiT for wind)

- In the DREI tool please use the "III. Inputs, Wind Energy" tab and enter the below data into the yellow cells
- Specifically refer to the "Instrument package NAMA" columns

Risk Category	Estimated Cost	
Power Market	\$1'100'000 (above the	
Risk	administrative costs of	
	the FiT)	
Permits Risk	\$1'000'000	
Social	\$500'000	
Acceptance Risk	\$500 000	
Resource &	\$1200000	
Technology Risk	φ1200000	
Grid Integration	\$1'500'000	
Risk	φ1 300 000	
Counterparty Risk	\$1'800'000	
Financial Sector	\$800'000	
Risk	ψ000 000	



3. Case study – Step 4:

Comparing the two alternative NAMA designs

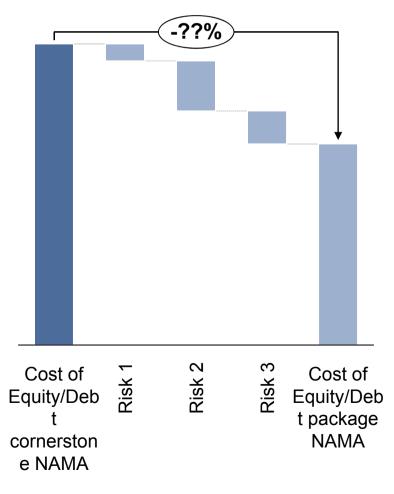
Question 4.1:

- How do the on-shore wind LCOE • differ between the two NAMA designs?
- And how do the incremental • costs (i.e., the additional costs of wind over the baseline) differ?
- What does this imply for the ٠ affordability of electricity for the end consumer in Country X?

+??%

+??%

LCOE and incremental costs


3. Case study – Step 4: Comparing the two alternative NAMA designs

Financing costs differential

Question 4.2:

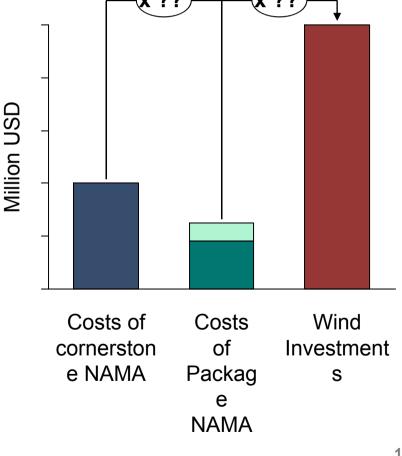
- What is the difference in financing costs for wind energy between the two NAMA designs?
 - Cost of equity
 - Cost of debt

3. Case study – Step 4:

Comparing the two alternative NAMA designs

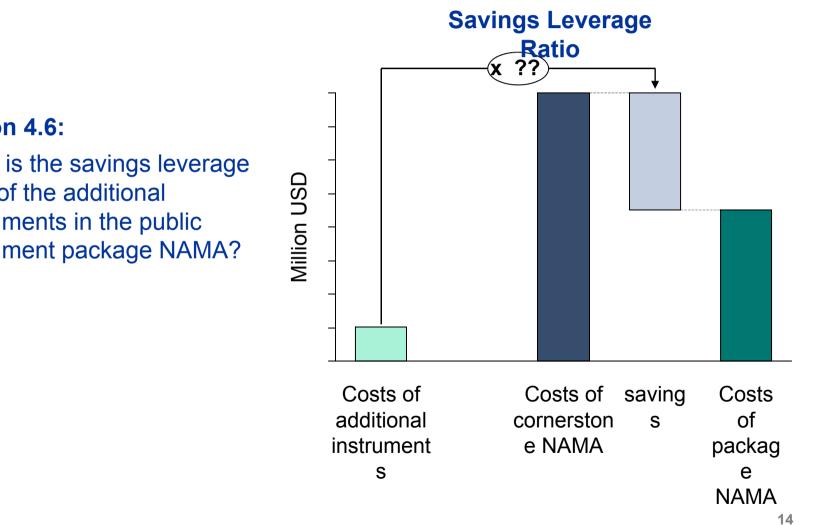
Question 4.3:

• How much private sector investment will the NAMAs trigger?


Question 4.4:

- What are the total public costs of the two alternative NAMAs?
- What is the breakdown between policy derisking instrument costs and incremental cost (FIT premium)?

Question 4.5:


- How does the investment leverage ratio compare between the two alternative NAMAs?
- What is the main public cost component that drives the investment leverage ratio in Country X?

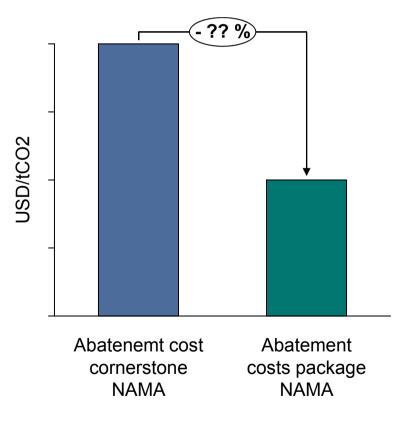
Investment Leverage Ratio

3. Case study – Step 4: **Comparing the two alternative NAMA designs**

Question 4.6:

What is the savings leverage • ratio of the additional instruments in the public instrument package NAMA?

3. Case study – Step 4: Comparing the two alternative NAMA designs



Question 4.7:

 Over the 20 year lifetime, what are estimated emission reductions that result from the wind energy investment in the NAMAs?

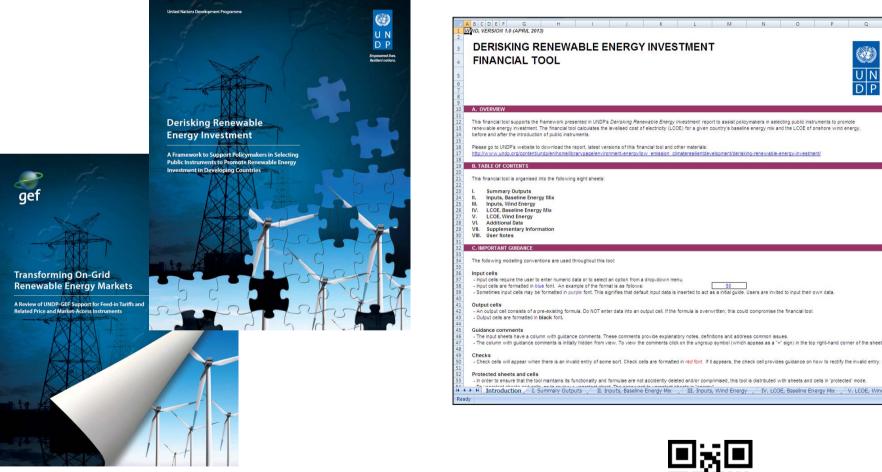
Question 4.8:

 What are the carbon abatement costs of both NAMAs?

Abatement costs

D1: Funding the NAMA

- Who among the main actors (national government, private sector, international donors, etc) could fund the various components in the proposed NAMA designs?
- Which instruments are well suited for MRV, which are less?


D2: The role of fossil fuel subsidies.

• What are the impacts of a 20% diesel fuel subsidy on the costs of both NAMAs?

٢

Reports & Financial Tool

Available at www.undp.org/DREI

