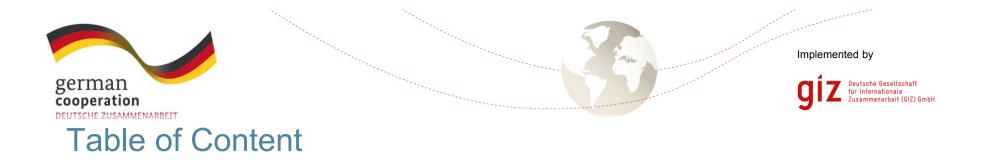


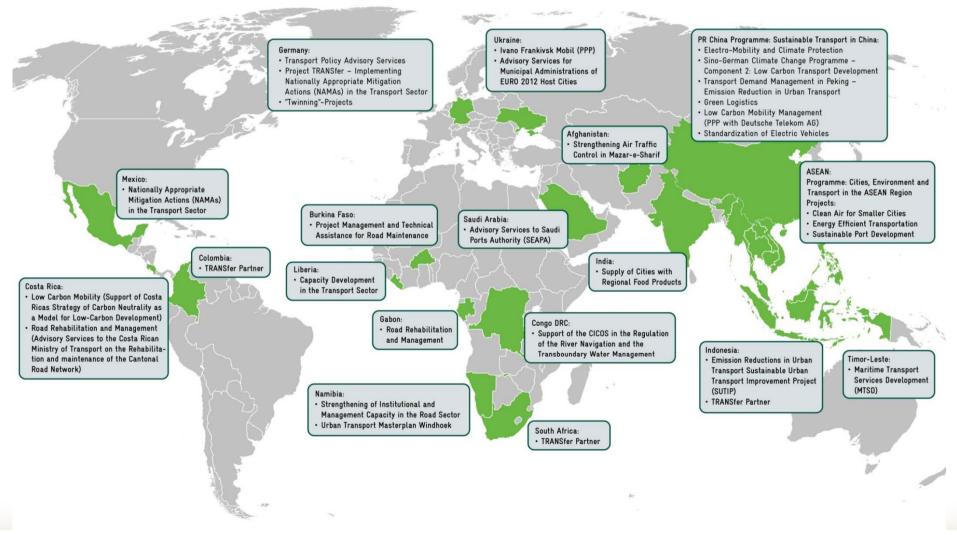
Good practices of NAMAs and National MRV Systems


MRV in the Transport Sector

UNFCCC NAMA Workshop

24 April 2014, Ventianne

Friedel Sehlleier



- Setting the scene: Transport and Emissions
- Approaches to reduce emissions / Mitigation Actions
- Emission Quantification Methodologies
- Country Examples: China and Mexico

GIZ Projects in the Transport Sector

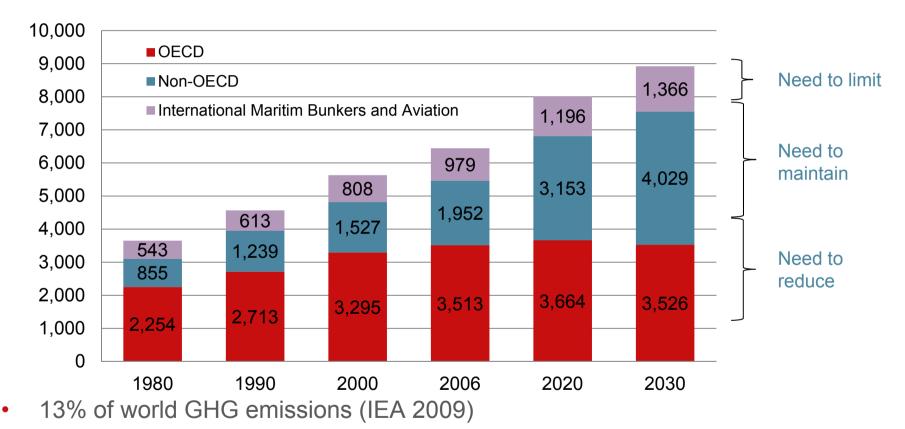
- ... provides personal **mobility**, enhances **equity & social inclusion**.
- ... facilitates local & international trade and economic growth.
- ... leads to productivity losses from **congestion**.
- ... impacts human health from local **air pollution**.
- ... contributes to climate change from **GHG emissions**.

... 24% energyrelated CO2 em.

... fastest growing sector

... GHG em. projected to double by 2050 (BAU)

Source: WRI



Transport Sector CO2 Emission by Region

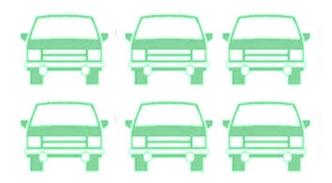
WEO Reference Scenario, 1980-2030, in million tonnes

• The transport sector is the fastest growing sector in terms of CO₂ emissions in developing countries.

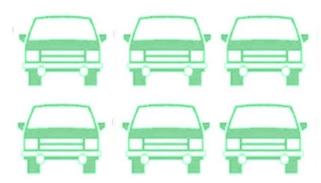
Source: Bongardt et.al. 2009 (based on IEA 2008)

Implemented by

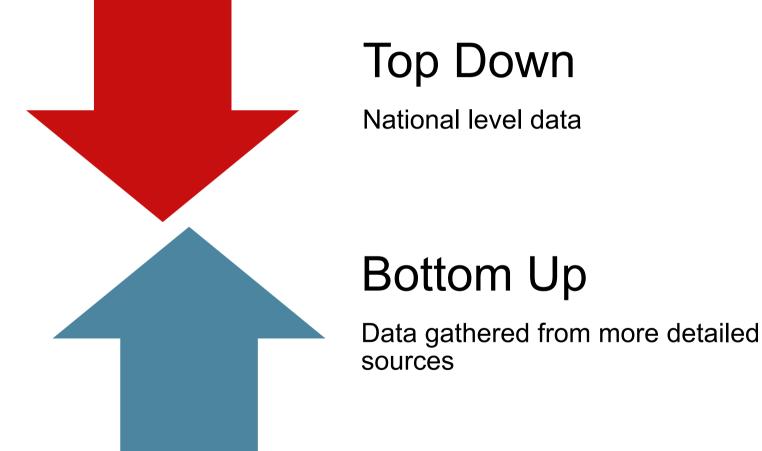
Avoid – Shift - Improve: Comprehensive Approach to GHG Reduction


AVOID unnecessary trips

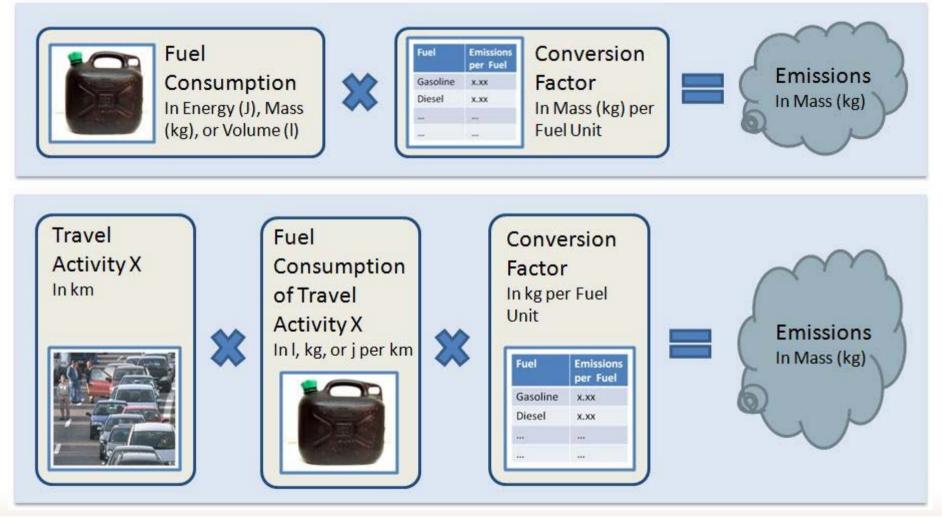
REDUCE km



IMPROVE vehicles low carbon fuels



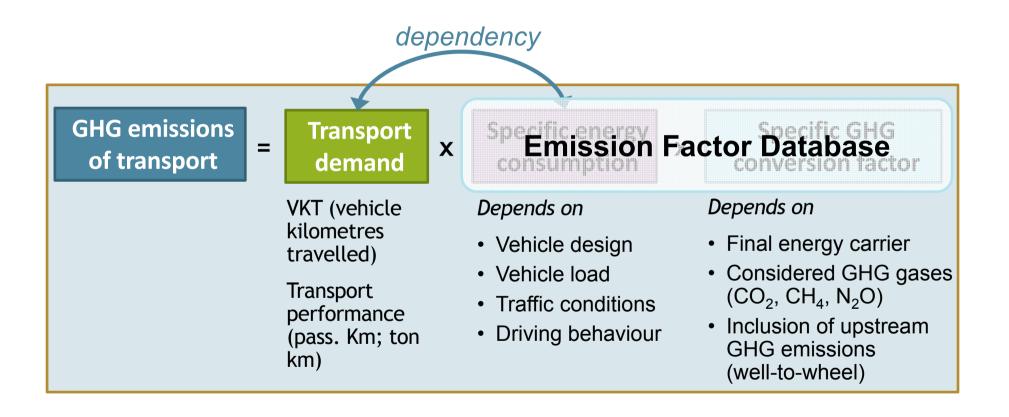
How to measure transport emissions



GHG Measurement Approaches

Top down vs bottom up

Implemented by



Comparison of Approaches

Approach	Advantages	Disadvantages		
Top Down	 National level data is normally available National level datasets tend to be relatively high quality Datasets are often consistent Good for historic emission estimates. 	 Relatively low level of detail Lack of data can make use of emission inventories challenging Not well suited to assessing impact of transport policies. 		
Bottom Up	 Emission sources assessed in detail based on data from individual sources Allows information on local issues, such as congestion, to be identified 	 The most accurate estimates require a large number of different datasets. Requires an extensive amount of data collection and handling Datasets can be inconsistent or of a relatively low quality 		

How to calculate GHG emissions (bottom-up?)

Transport Demand Management in Beijing – Emission reduction in Urban Transport

Objective:

Effective measures for Transport Demand Management (TDM) will be proposed for implementation and tools for measuring impacts will be applicable

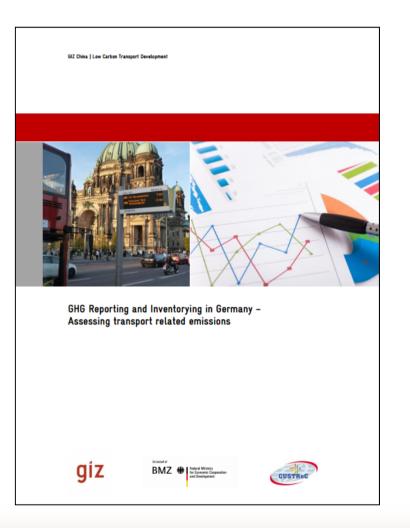
Components:

- 1. Identification and development of effective TDM measures for reducing CO₂ emissions.
- 2. Development of a model for transport related CO₂ emission reduction estimations
- 3. Dissemination of measures and tools to other Chinese cities

Partners

Beijing Municipal Commission for Transportation (BMCT)

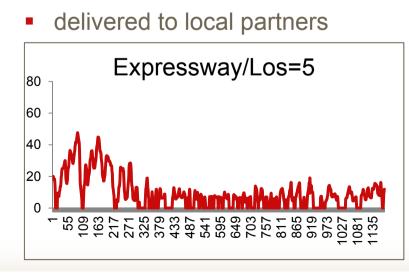
Beijing Transport Research Center (BTRC) – *implementing partner*


National Development and Reform Comission (NDRC)

National GHG Inventories

"GHG Reporting and Inventorying in Germany – Assessing transport related emissions"

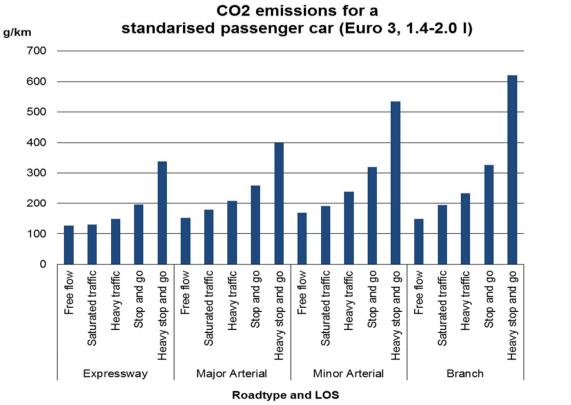
- Institutional set-up for GHG inventory planning, preparation and management at the national level in Germany
- General description of the data and methods used for the calculation of transport related emissions
- Tier 3 approach for GHG reporting considering traffic data and bottom up calculation (incl. CH4, N2O and cross-boundary traffic).
- <u>http://sustainabletransport.org/tag/gi</u> z-publication/

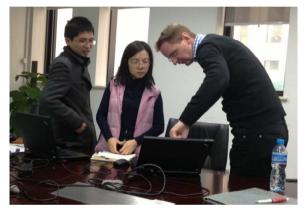


Experience from China Emission Modeling Package

China Handbook for Emissions Factors (CHEF-Model)

- A software package with adopted emission factors for China (CO2/km)
- Integration of all components of an emission model with a user friendly interface under development
- The objective is to estimate road traffic emissions with high temporal and spatial resolution





Emission Quantification

Chinese emission factors to support scenario evaluation

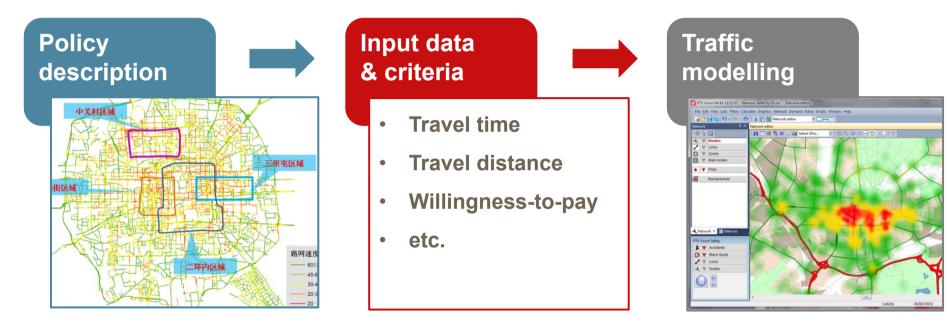


China: Congestion in Beijing Reduced traffic flow and network capacity

Sept 2007

(3.06 million, no restriction on traffic volume; Congestion index: 7.95)

Sept 2009


(3.87 million, restricting traffic volume; Congestion index: 5.93)

Sept 2010 (4.51 million, restricting traffic volume; Congestion index: 7.80)

Sept 17, 2010 (Congestion index: 9.70)

Congestion Charging Scenario analysis for optimal solutions

Implemented by

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Mexico's Road Freight Transport NAMA

Objective: Reduce emissions in Mexico's Road Freight Transport sector with a focus on small and medium-sized enterprises.

<u>Cooperation</u> between the Ministry of Communication and Transport (SCT), the Ministry of Environment and Natural Resources (SEMARNAT) and GIZ.

In order to modernise the fleet and promote efficient usage, various activities are being supported:

- **1.** Scrappage scheme to renew the fleet
- 2. "Transporte Limpio" to make the existing fleet more efficient

MRV approach for road freight transport NAMA Mexico

- Mitigation effect = baseline NAMA scenario
- Baseline / NAMA scenario = activity x emissions factor

Indicators:

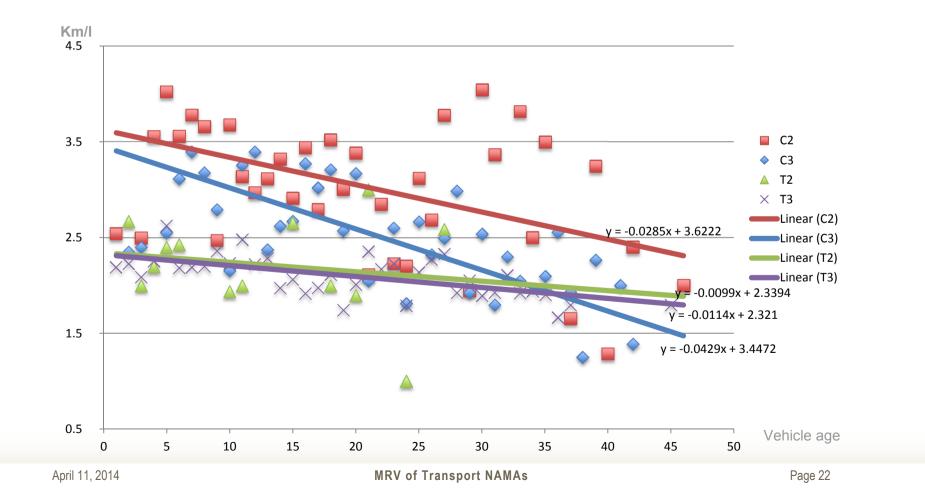
- GHG: (reduced) t CO2
- Transport: number of scrapped vehicles, vehicle age, remaining lifespan, emissions factors, distances traveled (tkm), fuel consumption, …
- Sustainable development benefits: PM, CO, NOx, accidents, jobs, ...
- Difficulties for road freight
 - Multitude of small non-homogeneous sources
 - Direct and indirect impacts
 - Many factors to be taken into account: condition of streets, driver behaviour, ...

Simple MRV Approach

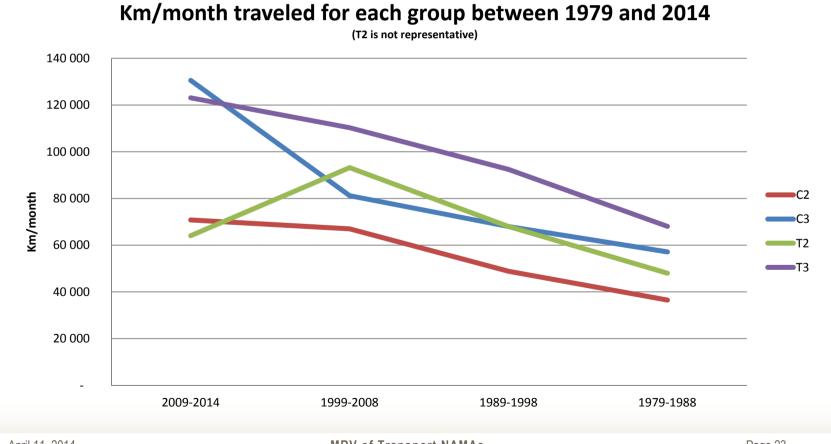
- Grouping of the fleet (vehicle type): C2, C3, T2, T3 ٠
- GHG reductions during remaining lifespan (of old vehicle)
 - Direct: tkm old pervear x (EF old - EF new)
 - (tkm new per year tkm old per year) x (EF fleet EF new) – Indirect:
- GHG reductions after remaining lifespan (of old vehicle) ٠

- tkm new per year X (EF new without NAMA - EF new)

- Data requirements: ٠
 - tkm_{annually} for each group
 - Emissions Factor (EF) for each group
 - Age and remaining lifespan of scrapped vehicles


Key issue: The fleet age among different sectors

Fleet age	Freight	Passenger	Tourism	Total
1 - 10 years	122,984	23,600	15,306	161,890
11 - 20 years	90,629	16,491	13,977	121,097
21 - 30 years	63,023	5,016	5,708	73,747
31 - 40 years	62,144	2,065	3,735	67,944
41 or more	12.925	-	367	13,292
Total	351,705	47,172	39,093	437,970
Fleet aged above 20 years	138,092	7,081	9,810	154,983
Share of total	39.3	15.1	25.1	35.4



Data survey: efficiency

Data survey: km traveled

Mexico's Road Freight Transport NAMA: Lessons learnt

- There is a "perfect vehicle scrap age"
 - Among the different types of trucks the most significant mitigation potential lies in scrapping C3
 - MRV as means to improve the programme
 - Fleet renovation is more effective than solely scrapping
 - Environmental impact of scrapping alone is relatively small
 - Do not only focus on the scrapping alone but complement it with further measures (quality standards, driver trainings, ...)
 - Scrapping alone is not enough to tackle the emissions in the transport sector
 - Data need to be collected and updated, but expenses in general for MRV approach are reasonable.
 - MRV can be built and improved step-by-step

Aim of this undertaking:

- lower the barriers to establish MRV
- contribute to a common understanding of elements of MRV
- facilitate developing and implementing transport NAMAs
- Establishment of an interdisciplinary expert group
- Reference document on "How to develop a roadmap for MRV systems in the transport sector?"
- Set of peer-reviewed MRV Blueprints for Transport NAMAs
- Country Case Studies

MRV Expert Workshop

- 2nd Workshop in Leipzig (Germany) on 20th May 2014
- Organisations involved:
 - UNECE
 - CCAP
 - IEA
 - ADB
 - IDB

MRV of Transport NAMAs: Challenges

- No clear definitions of MRV
- No standardized process
- Expectations of donors are partly unclear
- Availability and accessibility of data
- Fear of complexity

MRV of Transport NAMAs: Key messages

- MRV of Transport NAMAs is feasible (even for complex NAMAs)
- No need to replicate the CDM
- Start with the existing data, improve MRV system over time
- Understand MRV as means to improve policies and measures: MRV leads to improved transport policy

Thank you for your attention !

Friedel Sehlleier friedel.sehlleier@giz.de

As a federal enterprise, GIZ supports the German Government in achieving its objectives in the field of international cooperation for sustainable development.

Published by Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Registered offices, Bonn and Eschborn, Germany

ASEAN – German Technical Cooperation

Energy Efficiency and Climate Change Mitigation in the Land Transport Sector in the ASEAN Region

E stefan.bakker@giz.de I transportandclimatechange.org Responsible Stefan Bakker

In cooperation with

