Views on Enhancing Ambition Level to Address Climate Change: China's Perspectives

Prof. Zou Ji

Deputy Director General
National Center for Climate Strategy and International Cooperation

Professor Renmin University of China

Outline

- Mandate and 'AMBITION'
- Huge potential of enhancing mitigation ambition from Annex I Parties' low commitment level
- Needs for transformation of consumption style in developed economies
- Enhancing ambition level of technology transfer, financial assistance, and capacity building in developing countries
- Conclusions

Mandate and AMBITION

In Decision 1/CP17, the COP

8. Requests Parties and observer organizations to submit by 28 February 2012 their views on options and ways for further increasing the level of ambition and decides to hold an in-session workshop at the first negotiating session in 2012 to consider options and ways for increasing ambition and possible further actions.

The ambition is a matter of not only mitigation, but also adaptation, technology, finance, and capacity building.

Mitigation ambition for Annex 1 Parties

- Huge potential of enhancing mitigation ambition is derived from Annex I Parties' low commitment level and
- unsatisfactory performance in achieving Kyoto Protocol Target
 - a significant contribution to emission cut comes from recession
 - rather than from innovation in such a major emitting sectors as transport and building, as well as change of high carbon lifestyle.

About 50% of Annex 1 Parties cannot fulfill their KP Targets

- 16 Annex 1 parties have not reached KP targets and account for over 60% of emission from Annex 1 Parties
- 22 Annex 1 parties, 40% of emission, accomplished, among them, 12 come from EIT.

	Countries				
Countries not accomplishing KP targets	Iceland, Canada, Australia, New Zealand Luxemburg, Liechtenstein, Austria, Spain, US, Denmark, Swiss, Slovenia, Norway, Japan, Italy, Ireland				
Countries accomplishing KP targets					
EITs	Ukraine, Latvia, Estonia, , Romania, Bulgaria, Russia, Hungary, Slovakia, Poland, Check, Croatia				
Others	Sweden, UK, (EU), France, Monaco, Greece, Finland, Belgium, Germany, Portugal, Netherland				
No target	Turkey,Malta,白俄罗斯,Cyprus				

Source: UNFCCC

Needs for transformation of consumption style in developed economies

- Developed economies have had the advantages in
 - energy mix (more oil and gas than coal);
 - economic structure (transfer of CO2 intensive manufacture sectors)
 - Technologies and finance
- Consumption plays a major role in emission in developed economies
- Importance to change consumption pattern and style in developed economies

Enhancing ambition level of technology, finance and capacity building in developing countries

- The current ambition level is too low to meet the request for meeting the challenges of climate change
- This will lead serious lock-in effect and demonstrative effect
- The needs for technologies and financial resources are clear, it is high time to take action!

Key Technology Needs

	Deployment &Diffusion (Near term)	Demonstration (Medium-term)	R&D (long term)
Power	USC; On-shore Wind power technology; 3rd generation large-scale Advanced pressurized water reactor; Geothermal- Conventional; High-efficiency natural gas fired power generation;	Coal Integrated Gasification Combined Cycle (IGCC); Off shore wind power; Solar Photovoltaic; Geothermal–Enhanced; 2nd Biomass;	Low cost CO2 capture and storage; Nuclear fusion; CSP; Power storage; Smart grid; 4th nuclear generation; Solar nanotechnology photovoltaic; Hydrogen production, storage and distribution; Fuel Cell
Steel	CDQ; CCPP; CMC; Power, heat and fuel recovery; Coal Injection of Blast Furnace; Energy management center;	COREX; FINEX; Advance EF; Smelting reduction technology; Waste Plastic Injection;	Direct Casting; CO2 capture and storage;
Fransport	Enhance fuel economy of vehicles by improved engine/ transmission/ matching technology; Develop advanced diesel vehicles; Improve railway electrification; Aviate fuel economy management;	Hybrid vehicles; Enhance fuel economy of transport system by information & intelligent systems Improved road network;	, -
Cement	NSP cement kiln technology, especially the automatic control device and the overall operation level; Low-temperature cogeneration technology;	Eco-cement Alternative fuels and cement clinkers;	CCS;
Chemical	New type catalyst; Large-scaled Synthetic Ammonia equipment; Optimize structure of raw material for Ethylene;	Alternative fuels and raw materials;	CCS;
Buildings	Green Lighting; Technologies and materials of heat-insulation of external walls and roofs; Advanced efficiency electric devices;	District energy system; Heat pump system; supervising and Monitoring of building energy consumption technologies; Heat- electricity-coal gas triple co-supply system	Energy storage technology; Zero-emission buildings Building integrated photovoltaic solar power system; Advanced city plan;

Source: UNDP China and PECE, 2010

Messages on needs for investment/financial resources

	Global	China	Non Annex I Countries
IEA, World Energy	Additional investment in low-carbon technologies		
Outlook 2011	and energy efficiency in the 450 Scenario, relative		
	to the New Policies Scenario, amounts to a		
	cumulative \$15.2 trillion from 2011 to 2035.		
IEA, Energy	The BLUE Map scenario(450ppm scenario)	Achieving the 30% emissions reduction in the	
Technology	envisages a need for investment USD 46 trillion	BLUE Map scenario in 2050 compared to 2007 will	
Perspectives 2010	higher than the Baseline scenario from 2010 to	require additional investments of USD 10.2 trillion	
	2050, USD 13 trillion from 2010 to 2030, USD 33	between 2010 and 2050. (in the same period,	
	trillion is required after 2030	OECD Europe USD 7.1 trillion; US USD 5.8	
		trillion)	
McKinsey, 2009		An average annual investment of €150–200 billion	
		(or US\$200–260 billion, in total US\$ 4-5.2 trillion)	
		from 2010-2030 under the EA scenario	
PECE, NHDR 2009/10		China will need to invest US \$9.5 trillion and US	
		\$14.2 trillion, respectively, under the emission	
		control and emission abatement scenarios between	
		2010 and 2050.	
UNFCCC, Investment	Annual investment and financial flows in 2030:		Annual investment and financial
and financial flows: an	USD \$200.5 to 210.5 billion.		flows in 2030: USD \$64.7 billion.
update, 2009			

Source:

IEA, 2010, 2011; Mckinsey, 2009; UNDP China and PECE, 2010, and UNFCCC, 2009

Incremental Abatement Cost in China

	Incremental cost under EC			Increm	Incremental cost under EA		
	2020	2030	2050	2020	2030	2050	
Emission per capita t-CO2	5.6	5.8	6.3	5.6	5.8	3.7	
Emission intensity reduction (compared with 2005 level)	51	69	85	51	69	91	
Emission reduction Gt-CO2	3.2	5.1	6.7	3.2	5.1	10.7	
Incremental cost (billion Reduction cost(US\$-2005/t CO2)	86	269	523	86	269	1584	
	27	56	78	27	56	148	
Percent of GDP (%)	1.2%	2.2%	2%	1.2%	2.2%	6%	
Cost of per household (US\$-2005/ year)	182	538	1006	182	538	3046	

Source: UNDP China and PECE, 2010

Conclusions

- Developed countries' leading roles are crucial in terms of emission reduction and demonstrative effects
- Consumption will become a major arena for developed economies to cut their emission while there is a significant cut potential in the field of investment and export
- Technology, finance and capacity building are urgent, important and necessary for developing economies to shift into low carbon pathway of development

Thank you for your attention! Prof. Zou Ji zouji61@126.com

China National Center for Climate Change Strategy and International Cooperation

School of Environment and Natural Resources
Renmin University of China