

N₂O emissions from adipic acid production

ADP Technical Expert Meeting – Bonn, 22.10.2014

Philippe Chauveau Head of Climate Change Policy

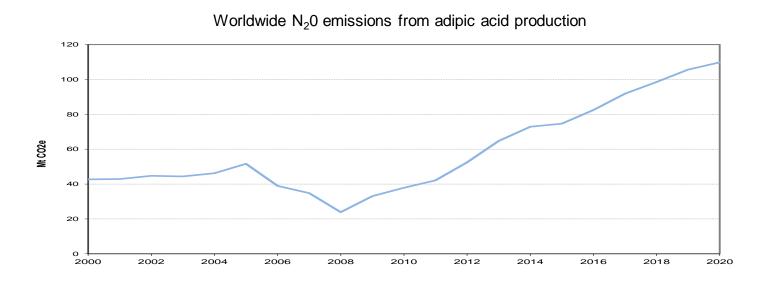
Energy Services

Two major segments in adipic acid consumption

• Adipic acid is a synthetic monomer at the root of two groups of downstream industries

	polyamide 6.6 (nylon)	other industries
applications	textile, automotive, carpets	resins, coatings, plastics, plasticizers, detergent
consumption	1 300 000 ton/year	1 400 000 ton/year
growth rate	2,2 %	3,8 %
makers	polyamide 6.6 producers	new players and polyamide 6.6 producers

Typical wordscale plant: 150 000 – 300 000 ton/year
 Average world price: 1 600 – 2 200 US\$/ton


2 N₂O emissions from adipic acid production 22/10/2014 – ADP Technical Experts Meeting Sources: PCI, SRI, Solvay

N₂O is a fatal by-product of adipic acid production but technologies exist to destroy most N₂O emissions

- all adipic acid plants worldwide by-produce N₂O in similar ratios
 N₂O emissions at a typical worldscale plant: 13 000 000 26 000 000 tCO₂e / year
- no economic rationale to capture and re-use N_2O
- two main technologies to reduce the N₂O emissions: thermal and catalytic destructions reduction of N₂O emissions can reach 95% and above economic barriers:
 - 15 30 mn US\$ investment for N₂O destruction technology at a worldscale plant
 - running costs ~50 US\$ per ton of adipic acid
 - hidden costs to achieve 95% and above reductions: minimization of N₂O emissions must become a driving parameter of the adipic acid production

The trend to reduce N₂O emissions has been reversed while CDM treatment stays unresolved for new plants

- 1990es voluntary investments to reduce N₂O emissions at historical plants
- 2000 2005 growth of production at recent plants
- 2006 2009 CDM investments to reduce N₂O emissions at recent plants (pre-2005) JI investments to further reductions at historical plants
- since 2010 several new plants commissionned no CDM rule set for post-2005 plants

4

A price signal is needed to re-launch the reduction of N₂O emissions and to reach record low levels

- CDM and JI enabled to overcome economic barriers and to reach record emission reductions
- In 2010, debate on CER from adipic acid due to two observations: the growth of production in CDM regions above world average and the level of the incentive
 In 2011-2014, considerable new production by new players despite no CDM incentive
 Existing CDM plants face difficulties covering running costs following EU-ETS ban
- No debate on ERU from adipic acid.

JI projects prepared the EU industry to include N₂O emissions in the compliance scope of the EU-ETS

JI projects for adipic acid were actually a combination of domestic reductions and international credits

Include N₂O emissions of all adipic acid plants, incl. new units, in market mechanisms (CDM or New Market Mechanism, or cap and trade)

and leverage the JI successfull experience with benchmark-based crediting which has a strong net mitigation potential and prepares including units in ETS.

5

www.solvay.com