CO₂ as building block for the chemical industry

United Nations Climate Change Conference, Bonn, Germany
Dr. Angelina Prokofyeva, Bayer Technology Services
Dr. Christoph Gürtler, Bayer MaterialScience
Raw materials – CO₂ as alternative carbon source

Variety of chemical products

> 40.000
Chemical products

~ 400
Bulk chemicals and key intermediates

~ 40
Basic chemicals

4
Raw materials

CO₂ as alternative carbon source

A. Prokofyeva, C. Gürtler, Bonn, 21.10.2014
New raw material CO$_2$
Motivation for its chemical use

Sustainability

• Resource efficiency
 • Saving scarce fossil fuels
 • Broadening raw material base
• Climate protection
 • Using CO$_2$
 • Avoiding CO$_2$ emissions

Value creation

• Market needs
 • Comply with growing desire for sustainable products
• Profitability and competitiveness
 • Improved products and processes

A. Prokofyeva, C. Gürtler, Bonn, 21.10.2014
Only small amounts of the anthropogenic CO₂ can be utilized in a chemical way - adequate innovation in catalysis might offer great potential
Strategies for CO\(_2\) conversion and utilization

Existing
- Urea (80 m. t/a)
- Methanol (2 m. t/a)
- Cyclic carbonate (0.04 m. t/a)
- Salicylic acid (0.025 m. t/a)

Emerging
- CO\(_2\) based polymers
- Dry reforming
- CO\(_2\) hydrogenation to formic acid
- Fuels (DME) etc., Intermediates
-

Exploratory
- Isocyanates
- Organic carbonates
- Lactone synthesis
- Carboxylic acids
-

A. Prokofyeva, C. Gürtler, Bonn, 21.10.2014
Industrial application of epoxide/CO₂ chemistry for carbonate syntheses

C₃O₂

Cyclcic carbonate

Alternating aliphatic polycarbonate

Polyether polycarbonate polyol

- Green solvent
- Synthesis of dimethyl carbonate
 - High molecular weight
 - Binders for ceramics
 - Biodegradable/compostable polymers
- Low molecular weight
- Terminal OH-functionalities yields polyols for polyurethanes synthesis

- Selectivity is strongly influenced by the catalyst / competing reaction
- Up to 43 wt% incorporation of CO₂ (R = CH₃) possible
- Homogenous and heterogeneous catalyst suitable

A. Prokofyeva, C. Gürtler, Bonn, 21.10.2014
Research Case CO₂ – Break-through at Bayer

1969 - 2008
Basic research

Lab success: Dream Reactions

2009

Implementation: Dream Production

2010

Dream Polymers

A. Prokofyeva, C. Gürtler, Bonn, 21.10.2014
Dream Production – From power plant to polyurethane

- Scrubbing and supply of CO₂
- Process development and conversion of CO₂
- Production and testing of polyurethanes with CO₂

Fundamental research

A. Prokofyeva, C. Gürtler, Bonn, 21.10.2014
Scientific breakthrough
Special catalyst found after 40 years

Success of close cooperation between Bayer and the CAT Catalytic Center in Aachen, Germany.

A. Prokofyeva, C. Gürtler, Bonn, 21.10.2014
Dream Production –
Covering the value chain

Bayer Technology Services

Construction and operation of a pilot-plant

Samples

A. Prokofyeva, C. Gürtler, Bonn, 21.10.2014
Dream Production –
Covering the value chain

Slab stock plant for CO$_2$-PET testing in foams
Target product polyurethanes – Allrounder among plastics

\[\text{Polyol} + \text{Isocyanate} \rightarrow \text{Polyurethane} \]
Foam quality evaluation results
Very good foam properties achievable

- CO₂ based polyurethanes can be used for many applications
- Properties on the same level or even better than conventional polyurethanes

A. Prokofyeva, C. Gürtler, Bonn, 21.10.2014
New technology works
But is it sustainable?
Complex LCA by RWTH University – All aspects covered

Environmental factor

Environmental effect

A. Prokofyeva, C. Gürtler, Bonn, 21.10.2014
Impacts on Climate Change

kg CO₂-eq / kg polyol

Conventional polyol

- epoxide
- epoxide
- starter
- utilities & others *

* includes process steam, electricity, cooling water, catalyst etc.

N. von der Assen and A. Bardow (2013). Oral presentation, ICCDU XII, Alexandria, VA, USA
Impacts on Climate Change

- kg CO₂-eq / kg polyol
 - Conventional polyol
 - epoxide
 - raw material replacement
 - starter
 - utilities & others*
 - CO₂-based polyol
 - epoxide
 - CO₂

* includes process steam, electricity, cooling water, catalyst etc.

Niklas von der Assen and André Bardow
Green Chem., 2014, 16, 3272-3280

A. Prokofyeva, C. Gürtler, Bonn, 21.10.2014
Dream Production
From research to commercial use

- Following successful research phase, commercial use of the new process and the production of the first CO$_2$-based polyols for sale.
- Construction of a production line at the Dormagen site with an annual capacity of 5,000 metric tons.
- Investment volume of EUR 15 million
- Planned start of production early 2016
Thank you for your attention!
✓ It works
✓ Very good foam properties achieved
✓ Improved CO$_2$ footprint
CO$_2$-based polyols:
Balance between value creation and market acceptance

CO$_2$

Viscosity
Effect of CO$_2$ in polyols
Carbonate groups contribute to increased viscosity

- Viscosity strongly depends on functionality and CO$_2$ content
- Polyols can be designed according to application requirements
- CO$_2$-based polyols show viscosity properties in the range between polyether and polyester grades
Thermal foam stability
CO₂-based foam show good performance

Thermal stability test* for PUR slabstock:
• Identical onset temperature and mass loss
• No difference in thermal sensitivity

Conclusion:
• CO₂ is chemically fixed inside the polyurethane backbone
• Thermal foam stability matches that of conventional polyols

* TGA: Thermo-Gravimetric Analysis (heating rate: 10 K/min)
New CO$_2$-based polyols for flex-foam
Comfort materials count for ~36% of the PU market

Global slabstock polyol market 2012*

- Conv. Polyol: ~2.8 Mio. t
- HR Polyol: 4%
- All Filled Polyols: 18%
- Other Polyols: 9%
- Global slabstock: 69%*

* Estimate based on IAL studies

A. Prokofyeva, C. Gürtler, Bonn, 21.10.2014