The role of Observational data in assessing climate change induced water stress in Egypt and the Nile Basin

Mohamed Elrawady, Regional Water Resources Specialist, Centre for Environment & Development for the Arab Region & Europe (CEDARE), 2 ElHegaz Street, Heliopolis, Cairo, Egypt, e-mail: melrawady@cedare.int

UNFCCC technical workshop on water and climate change impacts and adaptation strategies under the Nairobi work programme

18 July 2012, Mexico City, Mexico

Predictions for Egypt

- Increased temperatures raises the possibility of enhanced water losses from evapo-transpiration, which might imply reduction in stream-flows, and increased water demand.
- Increased precipitation in source waters of Nile (Ethiopian highlands), implies increased stream-flow downstream to the Nile's waters in Egypt.

برنامج إحارة الموارح المائية Water Resources Management Programme

Urbanization of coastal cities at risk of flooding with the little-left infiltration areas of the city

Precipitation in Alexandria

It was found that there is no concrete evidence on a constant precipitation decrease or increase trend in the last 50 years.

Future Measures Under Consideration

Pervious Pavements

Constructed wetlands

CEDARE&SHUTES,2009

برنامج إدارة الموارد المائية

Water Resources Management Programme

Adaptation measures: Waste Water Reuse

برنامج إدارة الموارد المائية

Water Resources Management Programme

Waste Water Reuse (2)

Nile Basin

- > 10% of Africa
- Drainage area of 3 Million sq. km
- 171 million inhabitants with various levels of dependency.
- > 11 countries
- Three rainfall regime zones: Arid, tropical, and equatorial
- Annual rainfall varies from 120 mm to 2450 mm

The need for accurate data

- Reliable data are strongly needed to assess climate change vulnerability in the Nile Basin.
- The irrigated areas as well as the rainfed areas had to be located to decide which areas will be affected the most by the scenarios that predict decreased precipitation.
- Evaporation and evapotranspiration trends had to be assessed, so that future trends could be estimated

Blue and Green Water Assessment

- cubic meter/capita/Year (1995) square meter/capita (1995)

Land Use change

- Normalized Difference Vegetation Index (NDVI) is used to indicate the spatial and temporal variation of green cover.
- Terrestrial Evapo-Transpiration (ET)dynamics in the Nile Basin is governed by climatic factors and change in land cover.

Source: Henok et al. 2012

Rainfed and irrigated agriculture

Important Findings

- There is evidence from instrumental records that due to climate change, rainfall trends and river flow regimes have changed.
- Areas that require attention in regards to fresh water supply due to climate changes:
 - Ruwenzori Mt, Ethiopian plateau
 - Nile confluence in Sudan
 - Nile Delta and Nile valley in Egypt
- Areas with Increased green cover:
 - Toshka Depression and Aswan in Egypt
 - Wadi Halfa, Ash shalal ar Rabia, and Korti in Sudan
 - Busia in Uganda
 - Kisumu in Kenya Toshka

Ongoing & Future Research

- Updating green and Blue water Assessment using NDVI and GIS.
- Assess the impact of current and future urbanization on water resources.
- Modeling different climate change scenarios.

THANK YOU