<table>
<thead>
<tr>
<th>Title of case study</th>
<th>Wave Energy Converter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of organization(s)</td>
<td>Nova Oceanic Energy Systems Inc.</td>
</tr>
<tr>
<td>Business sector</td>
<td>Energy and Utilities</td>
</tr>
</tbody>
</table>
| Region(s) relevant to case study | All regions
Africa and the Arab States
Asia and the Pacific
Caribbean and Central America
Europe
Least Developed Countries
North America
Polar regions
Small Island Developing States
South America |
| Country(s) relevant to case study | Dominican Republic and other Caribbean States |
| Adaptation sector(s) relevant to case study | Business
Education and training
Food security, agriculture, forestry and fisheries
Human health
Oceans and coastal areas
Science, assessment, monitoring and early warning
Terrestrial ecosystems
Tourism
Transport, infrastructure and human settlements
Water resources
Other (please specify): Renewable energy |
| Adaptation activity | The development of near shore wave energy converters that act in the same way as submerged breakwaters in reducing coastal erosion in island states and tropical regions, while simultaneously converting absorbed wave energy in distributed clean power generation for desalinization and electric power. Nova Oceanic Energy Systems Inc, in partnership with a number of other organisations, has started to introduce this technology in a |
number of Caribbean States, to evaluate its use for both adapting to and mitigating climate change in rural coastal communities.

Coasts are experiencing the adverse consequences of hazards related to climate and sea level, and are highly vulnerable to extreme events, such as storms which impose substantial costs on coastal societies. This technology is particularly suitable for tropical regions, which are particularly vulnerable to these threats and also often lack resources to adequately protect coastal communities. The distributed power generation and production of desalinized sea water would contribute to poverty reduction through the creation of new productive opportunities especially in arid communities or coastal communities far from drinking water sources.

Also, the possibility of rehabilitation of beaches forbidden for public use (for example, in the communities of the Barahona Province, Dominican Republic) will have a major impact in communities’ ability and capacity of income generation due to national and international beach tourism.

Another aim of the project was to help provide predictive data on wave heights and strengths 2-3 days in advance of their arrival, allowing communities to make suitable preparations.

<table>
<thead>
<tr>
<th>Cost-benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>While still an emergent technology, it has been shown to be an effective solution in reducing coastal impacts while also being potentially very profitable. A number of businesses in the Dominican Republic and neighbouring states have expressed an interest in deploying the technology commercially.</td>
</tr>
</tbody>
</table>

Disclaimer: These business cases have been cited to raise awareness about the engagement of the private sector in climate change adaptation. The information in the business cases has been provided either directly by the organization or obtained from a public source. The UNFCCC secretariat has not verified the information and takes no responsibility for it. Users are therefore advised to verify the information before they take any action relying on the information provided in the business cases.