Disaster Risk Assessment and Stratification Using the Hybrid Loss Exceedance Curve

Omar-Dario Cardona

Instituto de Estudios Ambientales – IDEA Universidad Nacional de Colombia, Manizales

Consortium Evaluación de Riesgos Naturales
- América Latina ERN-AL

RISK MANAGEMENT

Disaster risk management involves four different components or policies:

- a) Risk identification (comprises risk understanding, acknowledgement, perception and assessment);
- b) Risk reduction (encompasses the prevention and mitigation themselves);
- c) Risk financing (that is related to loss retention and transfer for financial protection); and
- d) Disaster management (that includes preparedness, emergency response, recovery and reconstruction).

RISK MANAGEMENT

- Needs risk assessment, and risk sizing signifies to evaluate the expected physical damage -victims and economic equivalent loss- as well as social, environmental and governance drivers.
- ✓ The causes and factors of risk must be identified in order to be able to assess the effectiveness of both corrective and prospective vulnerability / risk reduction measures.
- ✓ The follow-up of risk is an unavoidable step to evaluate the performance of disaster risk management and climate change adaptation.

Probabilistic Risk Assessment

Concept of return period or exceedance annual rate

Loss Exceedance Curve

✓ Correlates event frequency with expected economic loss

Loss Exceedance Curve

✓ Correlates event frequency with expected economic loss

New Event	10/5/2009		
Category	Hidrometereologicos		
<u>Affectation</u>			
Physical			
Damaged houses	779		
Destroyed houses	0		
Human			
Injured	0		
Killed	0		
Economical loss	6,232,400		

-	Time frame		
	years		
	41		
ļ	Accumulated loss		
	million USD		
	14,956		
	Anual Average Loss		
	million USD		
	367		

Loss exceedance frequency				
Economic loss	Events	frequency	Period	
[USD]	Number	[times/year]	[years]	
≥10,000	6346	155.612	0.006	
≥100,000	4487	110.027	0.009	
≥1,000,000	1673	41.024	0.024	
≥10,000,000	231	5.664	0.177	
≥ 20,000,000	111	2.722	0.367	
≥50,000,000	26	0.638	2	
≥100,000,000	11	0.270	4	
≥ 200,000,000	6	0.147	7	
≥500,000,000	3	0.074	14	
≥590,000,000	2	0.049	20	
>1.657.650.000	1	0.025	41	

	Loss	exceeda	nce curve	(LEC)			
1,000						0.001	
100 //wear]						0.01	5]
보 10 분						0.1	ea
Loss Exceedance Rate [1/year]			No.			1	Return Period (years)
For Doss Breed						10	Retu
0.01						100	
0.01	0.1	1	10	100	1,000	10,000	
		Econ	omic Loss [\$	USD]	Mil	lions	

New Event	10/5/2009			
Category	Hidrometereologicos			
Affectation				
Physical				
Damaged houses	779			
Destroyed houses	0			
Human				
Injured	0			
Killed	0			
Economical loss	6,232,400			

Loss exceedance frequency				
Economic loss	Events	frequency	Period	
[USD]	Number	[times/year]	[years]	
≥10,000	6346	155.612	0.006	
≥100,000	4487	110.027	0.009	
≥1,000,000	1673	41.024	0.024	
≥10,000,000	231	5.664	0.177	
≥ 20,000,000	111	2.722	0.367	
≥ 50,000,000	26	0.638	2	
≥100,000,000	11	0.270	4	
≥ 200,000,000	6	0.147	7	
≥500,000,000	3	0.074	14	
≥590,000,000	2	0.049	20	
> 1.657.650.000	1	0.025	41	

Loss Exceedance Curve

✓ Correlates event frequency with expected economic loss

Participation in losses of each type of event for Colombia using hystoric records

Economic losses for presidential periods in Colombia

Proposal of a "Hybrid" Loss Exceedance Curve (Cardona 2010)

EVALUATION OF RISK: ESTIMATING LOSSES

Risk management

ESCENARIO	TOTAL EXPUESTO Pèrdida (Mill. USD)	PML (%)
Falla Cauca	\$ 60.5	12.3
Falla Subducción	\$ 54.2	11.0
Falla Benioff	\$ 50.1	10.2
Falla Romeral	\$ 48.1	9.8

Developing Tools to support Climate Resilient

Message: WB is building tools to enable informed decision-making about complex dynamic systems in a changing climate.

WCDIS Weather and Climate Information and Decision-Support Systems and Decision-Support Systems

Understanding Risk

WB/GFDRR financed over 40 Regional, National and city level **Risk Assessment** to help countries Understand their Risk

http://vimeo.com/30057201

PCRAFI

2 km 1 mi 1:136494

Most extensive study of Disaster and Climate risk in the Pacific to support government decision making

MULTI-HAZARD APPROACH

Nested Regional Climate Model

Multi-decadal Regional Climate Predictions of High-Impact Weather Over North America & the Caribbean

- Global Model: 3 Ensembles from 1950-2060
- NRCM: 1995-2005 Obs, 1995-2005, 2020-2030, 2045-2055,
- 3 ensembles at 36km, 1 at 12 km, specific cases at 4 km.
- Use of statistical downscaling to fill in intermediate periods
- ~300 Tb of data (to date); 450 Tb total (including earlier runs)

Nested Regional Climate Model

Regional Climate Simulation for 2046

Nested Regional Climate Model

NRCM Example: Atlantic Hurricanes

Example of flood hazard evaluation using CAPRA

Scenario: Hurricane

Process

Results

EXPOSURE MODELLING USING CADASTRAL INFORMATION

CAPRA-GIS [VERSION DE PRUEBA]

Paises Amenazas Exposición Riesgo Ejemplos CAPRA WWJ

EXAMPLES OF VULNERABILITY FUNCTIONS

Absence of standards and their compliance controls and governance lead to chaotic conditions of vulnerability

Poverty and social segregation are factors that aggravate the conditions of vulnerability

"Hybrid" Loss exceedance curves

AAL comparison

	DesInventar All events [US\$ millions]	DesInventar Without other events [US\$ millions]	Catastrophic analysis Fiscal sector [US\$ millions]	Hybrid curve [US\$ millions]
Colombia	380	360	316	490
Mexico	2,760	2,540	810	2,424
Nepal	54	52	207	235

RISK INDICATORS

Expected annual loss (per thousand of exposed value)

Catastrophic Risk Profile: Guatemala

Risk concentration

Geographic distribution of Premium (%) by municipality - Hurricanes

Catastrophic Risk Profile: Guatemala

Risk concentration

Geographic distribution of Premium (%) by municipality - Earthquakes

Risk Stratification

Governments need to define a risk reduction/financing strategy

Risk Financing

Financial protection options

¿How can the government cover the costs of the attention of emergencies and reconstruction?

Post-disaster(ex-post)

- Reassignment of budget categories and loans
- New Taxes
- New-additional (international) credits
- Assistance from donors

Pre-disaster (ex-ante)

- Disaster reserve funds
- · Insurance/Reinsurance
- Catastrophe bonds
- · Contingent loans
- Capital markets

Risk Financing

Financial protection options

CAT BONDS

CONTINGENT SURPLUS NOTES

SECURITIES

HEDGES

CAT SWAPS

CLIMATE DERIVATIVES

CONTINGENT LOAN

Climate change already increasing the intensity and frequency of hydrometeorological hazards Energy Water Food security Transportation Wind Frequency Industry Health Storm surge **Tropical cyclones** luman setlements Exposure + **Hazards** Rainfall → Floods increase of vulnerability **Heat waves Increase of risk** Intensity

When ...the facts are uncertain, ...the values are in dispute, ...the stakes are high, and ...the decisions are urgent.