

Adapting to change in climate and climate variability

Peter Kouwenhoven IGCI University of Waikato Hamilton, New Zealand

February 28, 2007

ikato

Adaptation assessment

- identify problems + potential adaptations
- analyse extreme events without/with climate change, without/with adaptation, over time, including land use change
- find the incremental costs of adaptation due to climate change, and the incremental benefits because of (additional) adaptation

Example 1: climate proofing Avatiu Harbour Development

February 28, 2007

WAIKATO

Example 2: watertank design

Longest shortage (days) and number of shortage periods (>28 days) over 82 years for various adaptation options (comparing base and climate change scenario of 10% less annual rainfall, implemented by -1 mm of rain)

description	tank	area	usage	max shortage		# periods	
				base	scen.	base	scen.
base	2000	15	80	133	135	101	105
save	2000	15	50	74	123	30	39
incr. roof	2000	25	80	72	121	35	48
incr. tank	3000	15	80	133	135	86	93
best	3000	25	50	48	50	2	4

The tank sizes required to completely avoid a shortage of water, are (base/ climate change):

daily	roof area					
consumption	15 m ²	20 m ²	25 m ²			
50	22500/30500	11000/14500	6000/10000			
80	np	np	np			

Example 3: coastal impacts

Lessons learned

- data, data, data ...
- adaptations: focus on reducing both present and future risks related to climate variability and extremes; "think out of the box"
- but: risk approach is very difficult to convey (long term vs. short term)
- stake-holder involvement (both problem assessment and solution implementation) should be as early and extensive as possible

Gaps, needs and concerns

- interactive development of adaptation options with generic approach and transferable solutions needed
- many but not all problems have a climate component...
- climate change models need to be improved (resolution & accuracy)

Roles of actors

- integration ("mainstreaming") of adaptation across all levels (local, national, regional) in: project planning/implementation, land use planning/regulation/enforcement, national strategic planning
- (pro-)actively, transparent, within given (short) timeframe

 press international community to pay the incremental costs of adaptation due to climate change more forthcoming