SYSTEMATIC OBSERVATIONS, DATA, CLIMATE METHODS AND TOOLS

AN OVERVIEW

By:
Paul Isabirye
Department of Meteorology-
Uganda

UNFCCC AFRICAN REGIONAL WORKSHOP ON ADAPTATION: ACCRA, GHANA

26 September 2006
THE CLIMATE SYSTEM

- The atmosphere
- The biosphere
- The land surface
- The ocean
- The cryosphere
CLIMATE

- therefore involves the other components of the climate system in addition to the atmosphere
- is key to the geographical distribution of fauna and flora
- can lead to permanent or seasonal shifts in ecological range of species and socio-economic activities
A DEMONSTRATION OF CLIMATE INFLUENCE

- The shrinking ecological range of coffee, a threat to the country’s economy

CLIMATE CHANGE

- Attributed to natural variability and anthropogenic activities

- Anticipated impacts to affect people differently, depending on their livelihood strategies and asset base; hence relative vulnerability.

- The controversy surrounding climate change and climate variability calls even for more data spanning centuries and millennia
CLIMATE MONITORING

- Knowledge of temporal and spatial climatic trends critical for sustainable adaptation

- NMs, RCs and WCs therefore charged with the monitoring of the climate system.

- Standards set for observations and related operations; but collaboration and discipline are key
SYSTEMATIC OBSERVATIONS

- The climate system needs systematic monitoring in terms of **time**, **space** and **instrumentation**.

- The recording language is also standardised in ‘codes’ to facilitate data exchange.

- Installation specifications including orientation, angle, height/depth and geo-positioning in relation to the surroundings also have standards.
Data Quality Issues

- Proper instrumentation and installation (standard specifications, age and physical damages)
- Temporal and spatial consistence of observations
- Observation and data processing skills and discipline
- Calibration skills and proper maintenance of instruments
- Level of human error
CLIMATE METHODS AND TOOLS

- Initially meteorological services were mainly for defence and aviation needs, which required mainly real time products.

- With increasing climate challenges, extended and long-term climate products are required for advance planning in key sectors.

- These necessitate computer programs, which require more data for reliability and computer space.
CLIMATE MODELS

- GCMs, RCMs and downscaling models

- Several climate modelling centres, though none in Africa.

- However, some climate centres and institutions of high learning in Africa (e.g. ICPAC and Makerere University Kampala), are running some RCMs to build skills within the regions and validate them.

- The Hadley Centre has also developed PRECIS, a regional climate modelling system, which can run on PCs for any region.

- These need quality data for validation before operational use.
Lessons learnt and best practices

<table>
<thead>
<tr>
<th></th>
<th>Lessons Learnt</th>
<th>Best Practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systematic Observations</td>
<td>Conflicts are part of society especially in the developing world.</td>
<td>collaborative management</td>
</tr>
<tr>
<td></td>
<td>unlikely that a developing country will meet its optimal observation network demand.</td>
<td>AWOS</td>
</tr>
<tr>
<td>Data</td>
<td>Discontinuous data can still be put to some use.</td>
<td>Statistical packages for extrapolation e.g. INSTAT</td>
</tr>
<tr>
<td></td>
<td>The more data there is, the more reliable the products</td>
<td>Modern computers with high capacity available.</td>
</tr>
<tr>
<td>Climate methods and tools</td>
<td>GCMs not very useful at national level decision making, and it takes time to build skills in modelling.</td>
<td>RCMs/LAMs are more accurate in the tropics than in high latitude areas.</td>
</tr>
<tr>
<td></td>
<td>Gaps</td>
<td>Needs</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Systematic</td>
<td>Stations in areas of regional and world climatic importance are lacking</td>
<td>Strengthening and diversifying observations especially in marginal areas</td>
</tr>
<tr>
<td>Observations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>Areas with harsh climatic conditions have scanty or no data</td>
<td>Modern facilities (software and hardware) to handle the increasing volume of data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Climate</td>
<td>Country models lacking</td>
<td>Modelling skills need to be advanced</td>
</tr>
<tr>
<td>methods and tools</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UNFCCC African Region Adaptation Workshop
DIFFERENT ACTORS

<table>
<thead>
<tr>
<th></th>
<th>Local</th>
<th>National</th>
<th>Regional</th>
<th>International</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systematic Observations</td>
<td>Observations, security of equipment,</td>
<td>Network design, procurement of equipment, Installations, training of observers and maintenance</td>
<td>Regional guidelines for GCOS</td>
<td>Setting standards, GCOS</td>
</tr>
<tr>
<td>Data</td>
<td>Relay records to processing centres</td>
<td>Data quality control, archiving, dissemination/exchange, processing</td>
<td>Data exchange hubs</td>
<td>Codes, Data exchange guidelines,</td>
</tr>
<tr>
<td>Climate methods and tools</td>
<td>IKs</td>
<td>Downscaling of coarse products, updating climate series and undertaking national climatic studies</td>
<td>RCMs and regional climate studies</td>
<td>GCMs and world climate studies</td>
</tr>
</tbody>
</table>
UNFCCC Focus

Systematic Observations	Consider to support relevant activities of WMO and its member countries through article 5 of the convention under the Adaptation Fund
Data	WMO and its member countries may be supported in their efforts to reduce costs for remote sensing data, data processing and management software development as well as high-tech computer hardware under technology transfer for adaptation.
Climate methods and tools	Support developing countries in the area of modelling at national levels in order to strengthen their adaptation capabilities.
CONCLUSION

- There is a yawning mismatch between the scale of climate related challenges and the resources available to address them.

- Much of the data from Africa and the least developed countries is characterised by discontinuity and gaps.

- The issue of systematic observations and meteorological data, needs broader attention beyond WMO and its member countries.
THANK YOU