

Albania's First National Communication to the United Nations Framework Convention on Climate Change

Presented by:

Ermira FIDA, MBA
Project Manager
Climate Change Enabling Activities

COP 8, New Delhi, 23 October 2002

Content of the presentation

- Albania and UNFCCC
- · Organizational chart of the CC Project
- · Albania's First National Communication
- National circumstances
- GHG inventory
- GHG abatement
- Vulnerability and Adaptation
- · Climate Change Action Plan
- Main problems and Constrains
- · Public Awareness, Education
- Lessons Learnt
- Future plans
- Recommendations

Albania and UNFCCC

- UNFCCC ratified in 1995
- Non-Annex I Party
- National Focal Point MoE
- Member of CACAM since 2001
- Climate Change Project launched on October 1998
- The FNC submitted on September 2002
- A National Climate Change Action Plan developed
- Technology Needs Assessment started

Commitments under the Convention

Article 4

- ...to develop, periodically update, publish and make available to the COP, national inventories of anthropogenic emissions of GHGs...
- ...to formulate, implement publish, and regularly update national and where appropriate, regional programs containing measures to mitigate climate change and to facilitate adaptation to climate change...
- ...to communicate to the COP, through the Secretariat, the above elements

Organizational Chart of Climate Change Project

Content of the Albania's FNC

- Executive summary
- National Circumstances
- GHG inventory 1994
- GHG abatement analysis
- Vulnerability and adaptation
- National Climate Change Action Plan
- Public awareness, education and training
- Problems constraints and needs
- Annexes

National Circumstances

Geographic position

- Area 28,745 Km²
 - Hills and mountains accounts for 77 %
- Average altitude 708 m
- Length of the state border 1,093 Km²
- Population 3,3 million
- · Capitol Tirana
- Official language Albanian
- Local currency Leks
- GDP per capita (1994) 610 \$/capita
- Shares of GDP (1994)
 - Agriculture 54 %
 - Services 19.8 %
 - Industry 12.5 %
 - Transport 3.4 %

Climate profile

- · Subtropical Mediterranean climate
 - Mild winter with abundant precipitation
 - Hot dry summer
- A wide variation of the annual mean temperature
 - 7° C along the mountains
 - 15° C along the coast
- A negative trend of the mean annual temperatures
 - The influence of minimum temperatures versus maximum ones
- Annual precipitation total 1, 485 mm
 - 70 % recorded during October March
 - 80-120 runny days / year
 - Highest precipitation in Alps, up to 3,000 mm
 - Lowest precipitation total in southeast, 600 mm

Water resources

- relatively abundant water resources
- surface, ground and marine

Forests

- accounts for 36 % of the territory
 - 83% natural and semi natural
 - damaged due to illegal cuttings and burning

· Agriculture

- 50% of GDP
- before 1990 focused on cereals
- after 1990 shifted to animal foodstuffs supply

Mining

- rich in chromium, copper, iron nickel
- after 1990 production collapsed
- technology equipment obsolete

Energy

- Energy consumption
 - Electricity 60 % of total consumption in urban area
 - Electricity 30 % of total consumption in rural area
 - Fuel wood 60 % of total consumption in rural area
 - LPG and kerosene the rest
- Energy supply
 - Electricity: HPP 94%, TPP 6%
 - After 1990 frequent electricity cuttings due to:
 - Overuse
 - Lack of other alternatives

Transport

After 1990, a rapid expansion of private cars

Environment

- MoE established on October 2001
- A package of environmental laws and by laws adopted
- An updated NEAP adopted
- Environmental monitoring a weak point

- Report on direct GHG emissions in 1994
 - Carbon Dioxide (CO_2), Methane (CH_4), Nitrogen oxide (N_2O)
- Report on indirect GHG emissions in 1994
 - Carbon Monoxide (CO), Nitrogen oxides (NO $_{\rm x}$), (NMVOC).
- Report on emissions by sectors/sub-sectors
 - Energy, Agriculture, Industry, Forests, Waste, Solvents
 - Bunker fuels (separate reporting)
- Analyze CO₂ emissions from energy sector for 1990-1994
- Analyze main GHG indicators
 - CO₂ / GDP; CO₂ / capita
- Report on key sources
- Report on data gaps
- Assess the uncertainties

- Base year
 - 1994
 - 1990-1994, CO₂ from energy sector
- Methodology
 - Revised 1996 IPCC guidelines
 - Top -down
 - Bottom up
 - CORINAIR
 - Classification of Solvents
 - IPCC default Emission Factors
 - Country specific
 - EF(wood stoves, industrial boilers)
 - classification of fruit trees
 - IPCC Good Practice Guidance

GHG inventory (cont)

Main findings, 1994

 [7061.45 Gg] CO₂ eqv emissions total

CO₂ - the main GHG

 Energy sector -the main source category

GHG inventory - CO2/capita

1,97 ton/capita

- Energy consumption low compared to the selected countries
- 94% of electricity hydro
- Residential sector consumes about 60% of electricity
- Industry went down (energy consumption) after 1990.

GHG inventory - CO₂/GDP

3,758 ton/Mill.USD

- Albania's technology is very old;
- Productivity of society is low compared to other countries
- A large share of energy is used in residential sector (not in industrial sector to produce higher value of GDP)

Energy CO_2 from fuel combustion

- Industry (35%)
 - manufacturing
 - construction
- Transport (27%)
 - Road

- · Oil (87%)
- · Coal (11%)

CO₂ from fuel combustion (1990-1994)

Agriculture

Forests

In 1994, forests are a source of emissions, not a sink.

Key sources

- CH₄ emissions from enteric fermentation with 22.49%,
- CO₂ emissions from woody biomass burned for energy with 21.40%,
- CO₂ emissions from fuel combustion in industry with 11.24%,
- CO₂ fuel combustion, energy and transformation industries with 8.15%, and

Uncertainty assessment

- Difference between top-down and bottom up approach 3.01%
- The total combined uncertainty (CO_2) 19.4%
 - Significant contributor LUCF with 95.6%
- The total combined uncertainty (CH_4) 55.8%
 - Significant contributor enteric fermentation with 47%
- The total combined uncertainty (N_2O) 391%
 - Significant contributor stationary fuel combustion, energy manufacturing and construction industries, with 353%
- Overall uncertainty of GHG inventory 19.2%
 - Significant contributor fuel wood with 79.2%

- Time horizon
 - 1994-2020
- Methodology
 - Baseline scenario
 - · LEAP, version 95.0 for Energy and Transport
 - · Revised 1996 IPCC Guidelines for other sectors
 - Abatement scenario
 - GACMO for Energy and Transport
 - Expert judgment for other sectors

- Focus on
 - quantified analysis for energy sector
 - qualitative analysis for non-energy sectors
- Analysis of examined measures by sector
 - Industry
 - Residential (Households)
 - Services
 - Agriculture
 - Transport
 - Waste
 - Power generation
- Comparative analysis of measures by
 - Cost
 - GHG abatement potential

Baseline projections up to 2020

- [37,653 Gg] CO₂ eqv emissions total
- [24,000 Gg] energy & transport (83%)
- · CO₂ the main GHG

Industry - 35% Energy transform. - 29%

CO₂ non biogenic

Key measures

- · Power generation hydro instead of diesel
- · Power generation natural gas instead of diesel
- · Waste waste management measures
- Industrial sector efficient boilers
- Transport gas taxis
- · Residential sector prepaid metres
- · Residential sector efficient lamps
- Residential sector thermas switches in electric heaters
- · Residential sector thermo insulation
- Residential sector solar collectors

Overall potential for GHG abatement Energy and transport

GHG Abatement Scenario

overall reduction potential

Ranking according to specific cost of measures

· Time horizons for CC Scenarios

- 2025, 2050, 2100

Methodology

- MAGIC/SCENGEN software for CC scenarios
- IPCC technical guidelines for assessing CC Impacts and adaptations, 1994
- LEAP for impacts on Energy sector
- Statistical models, expert judgment, regional analogies for other sectors

Scope of assessment

- Hydrosphere, natural ecosystems, managed ecosystems, energy, industry, transport, health, population, tourism.

Focus on

- Evaluation of current climate situation
- Expected climate changes
- Expected impacts of climate changes
- Measures for adaptation

Climate Change Scenario

Annual temperature increase

up to $1\,^{\circ}C$, $1.8\,^{\circ}C$, $3.6\,^{\circ}C$ respectively by 2025, 2050, 2100

Annual precipitation decrease

up to -3.8%, -6.1%, -12.5% respectively by 2025, 2050, 2100

Expected annual temperature changes

Expected annual precipitation changes (decrease)

Impacts on water resources

- Reduction of the amount of surface water flow
- Decrease of water storage used by HPPs for energy production
- Reduction of the quality of drinking water
- High potential of flooding risk
- Increase of salinity of aquifers (CZ)

Impacts on Agriculture

Up to 2025

- No considerable impacts in crops' yields
- The potential citrus and olive growing area will be adopted in higher elevations (about 150 m) and will be enlarged.

· 2050-2100

- Reduction of the extend of the arable land due to soil erosion and alteration
- Changes in growth cycles, harvest time and quality of agricultural production (especially in CZ, due to intrusion of salt water in soil)
- Cultivation of early products in the open air or greenhouses, due to an increase of temperatures in winter

Impacts on Energy

Energy consumption

- An expected decrease in heating degree days
- An expected increase in cooling degree days
- An expected increased demand for energy for space cooling during summer
- An expected decreased demand for energy for space heating during winter

Energy production

- New Energy Scenario which consider Climate Change
 - From 94% (hydro) versus 6%(thermo) 47.7% (hydro) versus 52.3% (thermo)
 - Expected energy generation in 2025 23,816 GWh compared to 1,795 GWh in 1990.

Vulnerability and adaptation Electricity generation – alternative scenario

Adaptation options

Water

- Modification / construction of physical infrastructure
- Pollution control
- Improvement systems of monitoring and forecasting of flooding and drought
- Drafting & adoption new legislation for water use
- Setting a real consumption fee
- Implementation of the integrated coastal Zone Management

Energy

- Consider expected change in runoff / water flow in integrated resource planning, TPP and HPP design.
- Invest in energy conservation systems for space cooling
- Reduce energy subsides
- Use solar and wind energy

Agriculture

- Significant improvement of irrigation sector
- Afforestation and setting up barriers for protection of arable land
- Cultivation of xerophilic crops

National Climate Change Action Plan

NCCAP - part of the revised NEAP Focused on:

- Potentials to abate GHG emissions
- Potentials for adaptation to CC

Expected outcomes:

- Reduction of the rates of GHG emissions (no targets)
- Reduction of the vulnerability and adaptation
- Promotion of the sustainable development
- Poverty reduction
- Protection of environment / implement the convention
- Institutional strengthening
- Capacity building and enhancement
- Raise of public awareness in climate change issues

National Climate Change Action Plan

- The main responsibility for implementation of the NCCAP:
 - Ministry of Environment
- Period covered
 - up to 2020
- Revision according to:
 - New development plans and goals
 - Changes in legal framework
 - State-of-the-art data on climate change
 - National environmental strategy
 - Further developments in UNFCCC negotiations
 - Eligibility of funds under convention mechanisms and other sources
 - Status of Albania under the Convention
 - Amount of funds allocated by the Government
 - Level of public awareness

Public awareness, education on CC

- · The level of public awareness on CC is relatively low
- Prior the start up of the project on NC, no public awareness activities have been held
 - The project on NC has positively contributed on awareness raising
- Two national workshops organized:
 - Initiation workshop for project on NC
 - Workshop on FNC
- Posters, newspaper articles, web page.
- The level of education on CC is low, even for environmental issues.
- Some tendencies to introduce environmental education into school curricula

Main problems and constraints

Institutional

- Lack of legal framework for data reporting
- Inflexibility of NEX modality
- · Low level of awareness on CC

Technical

- Variability, reliability, availability of activity data
- Inconsistency of data to the reporting format
- Lack of country specific/regional EFs
- · Lack of adopted strategies for some sectors
- · Lack of future scenarios for different sectors
- Lack of regular climate monitoring
- · Lack of finer resolution for climate modeling
- Lack of training

Methodological

- Lack of guidelines on abatement and V&A
- Lack of IPCC methodology for solvents, open dumps or burning wastes

Lessons learnt

We recognize the importance of:

- The selection of the most qualified national experts in NC process
- · The sustainability and maintenance of the teams
 - Training of trainers
- Close collaboration of inventory and abatement teams
- Exchange of information and experience at national, regional, international level
 - Technical support provided by NCSP, UNFCCC Sec
- Working in relationship with similar enabling activities in the region/country
- Peer review of inventory, abatement and V&A studies
- Raising public awareness among policy makers

Recommendations

- Establishment of permanent mechanism for National Communications to serve as a national Secretariat for UNFCCC
- Maintenance and enhancement of national capacities built in the area of Climate Change
- Strengthening of regional cooperation
- Improvement of the existing guidelines for preparation of the NCs from NAI Parties
- Making funds available for the preparation of the SNC from NAI Parties
- Assist NAI Parties for the preparation of the SNC
 - NCSP, UNFCCC Sec.
- · Establishment of a regional center for CC