Agenda item 4.c.ii

Enabling environment and capacity-building: Enabling environment to enhance replicability and scalability of technologies for sustainable transport

Technology Executive Committee, 24th meeting 22–25 March 2022 – hybrid meeting

Ariesta Ningrum – UNFCCC secretariat Jonn Axsen - Associate Professor, Simon Fraser University, Vancouver, Canada Director, Sustainable Transportation Action Research Team Member, Royal Society of Canada College

Background:

- Activity 3 thematic area EECB:
 - Identify challenges and opportunities, including favorable market conditions, to strengthen enabling environments to enhance replicability and scalability of technologies for sustainable transport
- Deliverables in 2022:
 - o Background paper
 - o Thematic dialogue

Approach to this work:

- Similar approach to that of technical paper on emerging technologies in the energy supply:
 - o Similarities in objectives
 - Opportunities to explore emerging technologies in other sectors, as indicated by TF Innovation
 - Building on TEC previous work
 - Ensuring coherence in the overall work of the TEC

Scope of this work:

- Transport is a critical sector in terms of GHG emissions also considered important by Parties through NDC, TNA submissions
- New technologies in transport sector and related infrastructures may offer comprehensive solutions to reduce emission and close the gaps
- Transport sector is responsible for 24% of direct CO2 emissions from fuel combustion 75% of which are from road vehicles
- Therefore focusing on road transport/mobility is appropriate entry point for this work
- As with work on emerging technologies in the energy supply, the work on technologies for sustainable transport will look at:
 - a) access to new markets;
 - b) social, institutional, economic and business preconditions, and
 - c) social acceptability of the technologies.

Deliverables

- Background paper / Technical paper
- Thematic dialogue: Climate Week or COP 27 (tbc)
- Key messages & recommendations to COP/CMA

Deep decarbonization technologies for sustainable road mobility

Prepared for the United Nation Framework Convention on Climate Change (UNFCCC)

Technology Executive Committee (TEC)

By: Dr. Jonn Axsen

March 23, 2022

Context:

International Energy Agency's Net Zero Emissions scenario (NZE) summarizes the rapid transformations needed for **road transport**, including:

- 100% zero-emissions vehicle sales by 2035, mostly **electric vehicles** for light-duty vehicles
- Rapid advancement in green hydrogen, to fuel 30% of heavy-duty vehicles by 2050
- Rapid progress in **advanced biofuels** (low-carbon and sustainable)
- **Behaviour change**: 20-50% reduction in private vehicle use

Context:

International Energy Agency's Net Zero Emissions scenario (NZE) summarizes the rapid transformations needed for **road transport**, including:

IEA. All rights reserved.

Sales of battery electric, plug-in hybrid and fuel cell electric vehicles soar globally

Research Objectives:

- Provide an overview of the technologies and their state of play, including information on their technology readiness and potential climate change mitigation impacts;
- 2. Briefly summarize some social, institutional, economic and business **opportunities** related to their development and effective deployment; and
- 3. Identify innovative **policy options**, opportunities and challenges for policymakers to effectively support the deployment of these technologies.

Method:

Technology Readiness Level (TRL) from NASA and IEA:

Broad stage	TRL	Narrow stage
Conceptual/research phase	1	Initial idea
	2	Application formulated
	3	Concept needs validation
Small prototype	4	Early prototype
Large prototype	5	Large prototype (validated in relevant
		environment)
	6	Full prototype at scale
Demonstration/Deployment	7	Pre-commercial demonstration
	8	First-of-a-kind commercial (<0.1% sales)
	9	Commercial operation in relevant
		environment (0.1% to 1% sales)
Early Adoption	10	Integration needed at scale (1-10% sales)
Mature	11	Proof of stability: predictable growth (>10%)

Methods:

Literature review (+130 references), including key documents from:

- International Energy Agency (IEA)
- International Council for Clean Transportation (ICCT)

GHG emissions, note differences between

- Tailpipe emissions: generally not used here
- Well-to-wheel (WTW) emissions: considers lifecycle impact of fuel production (electricity generation) and fuel usage.
- Full lifecycle analysis (LCA): considers WTW fuel emissions, plus manufacturing and disposal of vehicle

Results overview:

Technology	Sub-type	TRL	2020 penetration	Carbon impacts	Role in IEA NZE 2050
					Scenario
Plug-in electric vehicle	Light-duty	10-11	Many countries: 1-10%	NA/EU: 60-77% cuts	2030: 60% of global sales
			Norway: 75%	China/India: 19-56% cuts	2050: 90%
	Heavy-duty	8-11	Heavy trucks: <0.1%	34-98% cuts	2030: 17% of global sales
			Buses: 5-60%		2050: 68%
Hydrogen fuel-cell	Light-duty	8	<0.1% sales	Grey H2: 26-40% cuts	2050: ~10% of global sales
vehicles				Green H2: 76-80% cuts	
	Heavy-duty	8	<0.1% sales	Green H2: 65-97% cuts	2050: ~30% of global sales
Advanced biofuels	Ethanol	7-8	3% of gasoline,	Up to 81% cuts	Advanced ethanol increases
			<0.1% is advanced		to 28% of ethanol by 2030
	Biodiesel	9	16% is advanced	85-92% cuts	Advanced biofuels meet 14%
					of transport energy by 2050
Shared mobility	Ride-hailing	9-11	~3% US adults are	Unclear	"Behaviour" shift?
			regular users		2050: 20-50% less private
					vehicle use
	Car-share	9-10	Over 30 million	Unclear	"Behaviour" shift?
			members globally		
	Micromobility	9-10	Available in 650 cities	Unclear;.	"Behaviour" shift?
	Mobility as	8	Very low,	Unclear;	"Behaviour" shift?
	a Service		dozens of projects		
			globally		
Fully automated	Light/heavy	4+	Demonstration only	Highly uncertain; halve	Not addressed
vehicles				or double GHG	
				emissions;	

Plug-in electri	c vehicles	(PE)	/s):		
Technology	Sub-type	TRL	2020 penetration	Carbon impacts	Role in IEA NZE 2050
					Scenario
Plug-in electric vehicle	Light-duty	10-11	Many countries: 1-10%	NA/EU: 60-77% cuts	2030: 60% of global sales
			Norway: 75%	China/India: 19-56% cuts	2050: 90%
	Heavy-duty	8-11	Heavy trucks: <0.1%	34-98% cuts	2030: 17% of global sales
			Buses: 5-60%		2050: 68%

Background	 Battery electric and plug-in hybrid vehicles Improving performance, range, variety
Market penetration	 Success for light-duty and buses in developed countries Still limited for heavy trucks (long-haul)
GHG emissions	 Needs low-carbon electricity Cuts GHGs by two-thirds in developed countries, one- quarter to one half in China/India
Opportunities	 More widespread implementation of strong PEV policy More focus on Global South (including two and three- wheelers) Exploration of smart charging (Vehicle-to-grid, etc.) Heavy-duty: "Mega-chargers" and catenaries

Hydrogen fuel-cell vehicles (HFCVs)					
Technology	Sub-type	TRL	2020 penetration	Carbon impacts	Role in IEA NZE 2050
					Scenario
Hydrogen fuel-cell	Light-duty	8	<0.1% sales	Grey H2: 26-40% cuts	2050: ~10% of global sales
vehicles				Green H2: 76-80% cuts	
	Heavy-duty	8	<0.1% sales	Green H2: 65-97% cuts	2050: ~30% of global sales

Background	 Green hydrogen (renewable) versus black/grey/blue Improving range (500-700km), but still high prices/costs Limited H2 fueling infrastructure (540 in 2020)
Market penetration	 - 25,000 light-duty HFCVs in 2020 (Korea, USA and China) - 9,000 heavy-duty (buses and trucks), mostly in China
GHG emissions	- Deep cuts possible with green hydrogen
Opportunities	 Continued subsidies in short-term, regulations for long-term Technology breakthrough needed in long-term (international alliances) More green hydrogen production, and more fueling infrastructure

Advanced bio	ofuels				
Technology	Sub-type	TRL	2020 penetration	Carbon impacts	Role in IEA NZE 2050 Scenario
Advanced biofuels	Ethanol	7-8	3% of gasoline, <0.1% is advanced	Up to 81% cuts	Advanced ethanol increases to 28% of ethanol by 2030
	Biodiesel	9	16% is advanced	85-92% cuts	Advanced biofuels meet 14% of transport energy by 2050
Background		- Blen - Flex - Drop - Lots (corn, - Adv doesr	ded into gasolir -fuel vehicles ca o-in fuels can be of feedstocks, sugarcane and anced: significa o't compete for l	ne/diesel at 5-20% an handle higher l e put into existing but dominated by soybeans) ant GHG reduction and, no other sus	6 olends (+85%) engines at high blends conventional sources n, non-food crop, tainability impacts
Market penetration- Little advanced ethanol (wheat straw, wood/agric 16% advanced biodiesel (cooking oil, waste animation)			wood/agric. waste) waste animal fat)		
GHG emissio	ons	- Advanced: 80-90% lifecycle GHG reductions			
Opportunities		 Need policy to account for lifecycle emissions, such as low- carbon fuel standard Comprehensive policy coverage to avoid leakage/shuffling 			

Shared m	obility				
Technology	Sub-type	TRL	2020 penetration	Carbon impacts	Role in IEA NZE 2050 Scenario
Shared mobility	Ride-hailing	9-11	~3% US adults are regular users	Unclear	"Behaviour" shift? 2050: 20-50% less private vehicle use
	Car-share	9-10	Over 30 million members globally	Unclear	"Behaviour" shift?
	Micromobility	9-10	Available in 650 cities	Unclear	"Behaviour" shift?
	Mobility as a Service	8	Very low, dozens of demos globally	Unclear	"Behaviour" shift?
Market	penetration	bike - Wie	, e-bike, scooter, e despread uptake ir	-scooter) n many major cit	ies
GHG emissions - Unclea vehicle - What i active tr		 Unclear evidence for reduced car ownership or reduced vehicle travel What mode is displaced? Often substitute for transit, active travel, or taxi 			
Opportunities		 More support for pooled ride-hailing (multi-passenger) Regulations that require electric ride-hailing and car-share 			

Fully automated vehicles					
Technology	Sub-type	TRL	2020 penetration	Carbon impacts	Role in IEA NZE 2050
					Scenario
Fully automated vehicles	Light/heavy	4+	Demonstration only	Highly uncertain; halve or double GHG emissions;	Not addressed
	-			•	•

Background	 Level 4/5 automation drives the vehicle without driver input
Market penetration	 Still in demonstration phase, testing continues Full automation is not available for sale
GHG emissions	 Huge range of potential impacts Can cut emissions if it leads to vehicle sharing, downsizing, or eco-driving Can increase emissions with increase to vehicle travel, higher highway speeds, new user groups, "dead-heading"
Opportunities	 ZEV-supporting regulations can reduce emissions per km Carbon pricing can mitigate rebound effects (travel increase)

Agenda item 4.c.ii. Technologies for sustainable transport

Summary

- Considered key technologies related to net-zero emissions (NZE) scenario
- Highest technology-readiness (TRL) for plug-in electric light-duty vehicles and buses
- Lower readiness for:
 - Heavy-duty trucks (notably long-haul)
 - Fuel-cell hydrogen vehicles
 - Advanced biofuels (ethanol and biodiesel)
- Shared mobility and automation have unclear roles in decarbonization, though climate policy can induce more climate benefits

Next steps

- More comprehensive analysis of the social, institutional, economic and business barriers and opportunities for each technology
- Additional detail on the barriers and opportunities for developing countries, including countries in Africa, Southeast Asia, and Central & South America
- Further evaluate the noted climate policy categories, particularly their ability to overcome these identified barriers

TEC consideration:

Provide guidance to the taskforce with regard to:

- Background paper, including on next steps
- Thematic dialogue on this topic (RCW or COP27)
- Key messages and recommendations to COP27/CMA 4

Thank you!

Ariesta Ningrum – UNFCCC secretariat Jonn Axsen - Associate Professor, Simon Fraser University, Vancouver, Canada Director, Sustainable Transportation Action Research Team Member, Royal Society of Canada College