Agenda item 4.c.ii

# Enabling environment to enhance replicability and scalability of technologies for sustainable transport

Technology Executive Committee, 25<sup>th</sup> meeting and TEC-CTCN Joint session 6–9 September 2022 Bonn, Germany



Jonn Axsen, Simon Fraser University

# Technical paper on

# Deep decarbonization technologies for sustainable road mobility

Prepared for the United Nations Framework Convention on Climate Change (UNFCCC)

Technology Executive Committee (TEC)

By: Dr. Jonn Axsen

September 6, 2022



25<sup>th</sup> meeting of the Technology Executive Committee and TEC-CTCN Joint session

#### **Context:**

International Energy Agency's Net Zero Emissions scenario (NZE) summarizes the rapid transformations needed for **road transport**, including:

- 100% zero-emissions vehicle sales by 2035, mostly **electric vehicles** for light-duty vehicles
- Rapid advancement in green hydrogen, to fuel 30% of heavy-duty vehicles by 2050
- Rapid progress in **advanced biofuels** (low-carbon and sustainable)
- **Behaviour change**: 20-50% reduction in private vehicle use



#### **Context:**

International Energy Agency's Net Zero Emissions scenario (NZE) summarizes the rapid transformations needed for **road transport**, including:



IEA. All rights reserved.

Sales of battery electric, plug-in hybrid and fuel cell electric vehicles soar globally



#### **Research Objectives:**

- Provide an overview of the technologies and their state of play, including information on their technology readiness and potential climate change mitigation impacts;
- Summarize key barriers and opportunities relating to social, institutional, economic and business aspects of their development and effective deployment; and
- Identify and evaluate innovative policy options, opportunities and challenges for policymakers to effectively support the deployment of these technologies.



#### Method:

#### Technology Readiness Level (TRL) from NASA and IEA:

| Broad stage               | TRL | Narrow stage                                  |
|---------------------------|-----|-----------------------------------------------|
| Conceptual/research phase | 1   | Initial idea                                  |
|                           | 2   | Application formulated                        |
|                           | 3   | Concept needs validation                      |
| Small prototype           | 4   | Early prototype                               |
| Large prototype           | 5   | Large prototype (validated in relevant        |
|                           |     | environment)                                  |
|                           | 6   | Full prototype at scale                       |
| Demonstration/Deployment  | 7   | Pre-commercial demonstration                  |
|                           | 8   | First-of-a-kind commercial (<0.1% sales)      |
|                           | 9   | Commercial operation in relevant              |
|                           |     | environment (0.1% to 1% sales)                |
| Early Adoption            | 10  | Integration needed at scale (1-10% sales)     |
| Mature                    | 11  | Proof of stability: predictable growth (>10%) |



#### **Methods:**

Literature review (+220 references), including key documents from:

- International Energy Agency (IEA)
- International Council for Clean Transportation (ICCT)

GHG emissions, note differences between

- Tailpipe emissions: generally not used here
- Well-to-wheel (WTW) emissions: considers lifecycle impact of fuel production (electricity generation) and fuel usage.
- Full lifecycle analysis (LCA): considers WTW fuel emissions, plus manufacturing and disposal of vehicle



#### **Results overview:**

| Technology               | Sub-type      | TRL   | 2021 penetration        | Carbon impacts           | Role in IEA NZE 2050        |  |
|--------------------------|---------------|-------|-------------------------|--------------------------|-----------------------------|--|
|                          |               |       |                         |                          | Scenario                    |  |
| Plug-in electric vehicle | Light-duty    | 10-11 | Many countries: 1-15%   | NA/EU: 60-77% cuts       | 2030: 60% of global sales   |  |
|                          |               |       | Norway: 86%             | China/India: 19-56% cuts | 2050: 90%                   |  |
|                          | Heavy-duty    | 8-11  | Heavy trucks: ~0.1%     | 34-98% cuts              | 2030: 17% of global sales   |  |
|                          |               |       | Buses: 5-60%            |                          | 2050: 68%                   |  |
| Hydrogen fuel-cell       | Light-duty    | 8     | <0.1% sales             | Grey H2: 26-40% cuts     | 2050: ~10% of global sales  |  |
| vehicles                 |               |       |                         | Green H2: 76-80% cuts    |                             |  |
|                          | Heavy-duty    | 8     | <0.1% sales             | Green H2: 65-97% cuts    | 2050: ~30% of global sales  |  |
| Advanced biofuels        | Ethanol       | 7-8   | 3% of gasoline,         | Up to 81% cuts           | Advanced ethanol increases  |  |
|                          |               |       | <0.1% is advanced       |                          | to 28% of ethanol by 2030   |  |
|                          | Biodiesel     | 9     | 16% is advanced         | 85-92% cuts              | Advanced biofuels meet 14%  |  |
|                          |               |       |                         |                          | of transport energy by 2050 |  |
| Shared mobility          | Ride-hailing  | 9-11  | ~3% US adults are       | Unclear                  | "Behaviour" shift?          |  |
|                          |               |       | regular users           |                          | 2050: 20-50% less private   |  |
|                          |               |       |                         |                          | vehicle use                 |  |
|                          | Car-share     | 9-10  | Over 30 million         | Unclear                  | "Behaviour" shift?          |  |
|                          |               |       | members globally        |                          |                             |  |
|                          | Micromobility | 9-10  | Available in 650 cities | Unclear;.                | "Behaviour" shift?          |  |
|                          | Mobility as   | 8     | Very low,               | Unclear;                 | "Behaviour" shift?          |  |
|                          | a Service     |       | dozens of projects      |                          |                             |  |
|                          |               |       | globally                |                          |                             |  |
| Fully automated          | Light/heavy   | 4+    | Demonstration only      | Highly uncertain; halve  | Not addressed               |  |
| vehicles                 |               |       |                         | or double GHG            |                             |  |
|                          |               |       |                         | emissions;               |                             |  |



#### **Plug-in electric vehicles (PEVs):**

| Technology Sub-type      |            | TRL   | 2020 penetration      | Carbon impacts           | Role in IEA NZE 2050      |  |
|--------------------------|------------|-------|-----------------------|--------------------------|---------------------------|--|
|                          |            |       |                       |                          | Scenario                  |  |
| Plug-in electric vehicle | Light-duty | 10-11 | Many countries: 1-10% | NA/EU: 60-77% cuts       | 2030: 60% of global sales |  |
|                          |            |       | Norway: 75%           | China/India: 19-56% cuts | 2050: 90%                 |  |
|                          | Heavy-duty | 8-11  | Heavy trucks: <0.1%   | 34-98% cuts              | 2030: 17% of global sales |  |
|                          |            |       | Buses: 5-60%          |                          | 2050: 68%                 |  |



|                                       | Plug-in electri        | c vehicles | (PE)                                                                              | /s):                                                                         |                                        |                                    |                                                               |  |
|---------------------------------------|------------------------|------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------|------------------------------------|---------------------------------------------------------------|--|
| Те                                    | chnology               | Sub-type   | TRL2020 penetrationCarbon                                                         |                                                                              | Carbon impacts                         |                                    | Role in IEA NZE 2050<br>Scenario                              |  |
| Plı                                   | ıg-in electric vehicle | Light-duty | 10-11                                                                             | Many countries: 1-10%<br>Norway: 75%                                         | NA/EU: 60-77% cu<br>China/India: 19-56 | uts<br>% cuts                      | 2030: 60% of global sales<br>2050: 90%                        |  |
|                                       |                        | Heavy-duty | 8-11                                                                              | Heavy trucks: <0.1%<br>Buses: 5-60%                                          | 34-98% cuts                            |                                    | 2030: 17% of global sales<br>2050: 68%                        |  |
|                                       | Barrier                |            | Op                                                                                | portunities                                                                  | P                                      | Polici                             | es                                                            |  |
|                                       | 1. High purchase of    | costs      | Low                                                                               | er cost PEVs, two/three-                                                     | wheeler S                              | Subsidies, ZEV mandate             |                                                               |  |
|                                       | 2. Limited chargin     | Ig         | Publi<br>batte                                                                    | Public-private partnerships, fast charging, battery swapping, catenary lines |                                        |                                    | Charger deployment; subsidies and regulation for installation |  |
|                                       | 3. Grid impacts        |            | Coordinate w/ renewables, smart charging, smaller PEVs (two/three-wheeler)        |                                                                              |                                        | Time-of-use (TOU) pricing          |                                                               |  |
| 4. Battery source materials           |                        |            | Expand domestic mining and<br>manufacturing;<br>increased R&D (e.g., cobalt-free) |                                                                              |                                        | legulat<br>ecyclin                 | ion for extraction and<br>g                                   |  |
| 5. Consumer awareness and preferences |                        |            | Marketing, demonstration, setting norms                                           |                                                                              |                                        | ZEV mandate, information campaigns |                                                               |  |
| 6. Model availability/variety         |                        |            | Supp<br>expa                                                                      | ort new automakers;<br>nd domestic auto indust                               | ry Z                                   | ZEV mandate                        |                                                               |  |
| 7. Fleet/commercial challenges        |                        |            | Marketing, demos, increase model variety                                          |                                                                              |                                        | EV manfo. can                      | ndate, subsidies,<br>npaigns for fleets                       |  |
|                                       | 8. Equity impacts      |            | Policy design for equity goals                                                    |                                                                              |                                        | Careful<br>ubsidie                 | design of taxes and<br>s                                      |  |



#### Hydrogen fuel-cell vehicles (HFCVs)

| Technology                     | Sub-type   | TRL 2020 penetration |             | Carbon impacts                                | Role in IEA NZE 2050       |
|--------------------------------|------------|----------------------|-------------|-----------------------------------------------|----------------------------|
|                                |            |                      |             |                                               | Scenario                   |
| Hydrogen fuel-cell<br>vehicles | Light-duty | 8                    | <0.1% sales | Grey H2: 26-40% cuts<br>Green H2: 76-80% cuts | 2050: ~10% of global sales |
|                                | Heavy-duty | 8                    | <0.1% sales | Green H2: 65-97% cuts                         | 2050: ~30% of global sales |



| Hydrogen fuel-cell vehicles (FCEV) |            |     |                  |                       |                            |  |  |
|------------------------------------|------------|-----|------------------|-----------------------|----------------------------|--|--|
| Technology Sub-type                |            | TRL | 2020 penetration | Carbon impacts        | Role in IEA NZE 2050       |  |  |
|                                    |            |     |                  |                       | Scenario                   |  |  |
| Hydrogen fuel-cell                 | Light-duty | 8   | <0.1% sales      | Grey H2: 26-40% cuts  | 2050: ~10% of global sales |  |  |
| vehicles                           |            |     |                  | Green H2: 76-80% cuts |                            |  |  |
|                                    | Heavy-duty | 8   | <0.1% sales      | Green H2: 65-97% cuts | 2050: ~30% of global sales |  |  |

| Barrier                               | Opportunities                                                                            | Policies                                          |
|---------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------|
| 1. High price                         | International alliances, R&D to bring<br>down costs, focus on heavy-duty<br>applications | Purchase/fuel subsidies, ZEV mandate              |
| 2. Very limited refueling             | Public-private partnerships, R&D activity,                                               | Subsidies, ZEV mandate                            |
| 3. Limited green hydrogen generation  | Expand renewable capacity, R&D activity, and subsidies                                   | Subsidies, low-carbon fuel standards              |
| 4. Consumer awareness and preferences | Improved marketing and demonstration                                                     | ZEV mandate, info. campaigns, purchase incentives |
| 5. Model availability/variety         | Support FCEV automakers; expand FCEV industry                                            | ZEV mandate                                       |
| 6. Competition from BEVs              | Focus on long-haul heavy-duty applications                                               | Match PEV policies for FCEVs                      |



#### **Advanced biofuels**

| Technology        | Sub-type  | TRL | 2020 penetration                     | Carbon impacts | Role in IEA NZE 2050<br>Scenario                        |
|-------------------|-----------|-----|--------------------------------------|----------------|---------------------------------------------------------|
| Advanced biofuels | Ethanol   | 7-8 | 3% of gasoline,<br><0.1% is advanced | Up to 81% cuts | Advanced ethanol increases<br>to 28% of ethanol by 2030 |
|                   | Biodiesel | 9   | 16% is advanced                      | 85-92% cuts    | Advanced biofuels meet 14% of transport energy by 2050  |



#### **Advanced biofuels**

| Technology        | Sub-type  | TRL | 2020 penetration                     | Carbon impacts | Role in IEA NZE 2050<br>Scenario                        |
|-------------------|-----------|-----|--------------------------------------|----------------|---------------------------------------------------------|
| Advanced biofuels | Ethanol   | 7-8 | 3% of gasoline,<br><0.1% is advanced | Up to 81% cuts | Advanced ethanol increases<br>to 28% of ethanol by 2030 |
|                   | Biodiesel | 9   | 16% is advanced                      | 85-92% cuts    | Advanced biofuels meet 14% of transport energy by 2050  |

| Barrier                                       | Opportunities                                                                                                                  | Policies                                                                         |  |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|
| <b>1. Impacts to food prices and security</b> | Focus on non-food crops, develop partnerships to plan land use                                                                 | Include food/land considerations in<br>low-carbon fuel standard (LCFS)<br>policy |  |
| 2. High carbon sources                        | Invest in "advanced" biofuels, carbon capture & storage                                                                        | LCFS, link subsidies to low carbon content                                       |  |
| 3. High price                                 | R&D in advanced feedstocks (e.g.,<br>switchgrass, wheat straw, HDRD),<br>develop low-cost resources in<br>developing countries | Subsidies, LCFS                                                                  |  |
| 4. Limited refueling                          | Public-private partnerships                                                                                                    | Refueling deployment, LCFS                                                       |  |
| 5. Lack of compatible vehicles                | Develop "drop-in" fuels (e.g.,<br>HDRD)                                                                                        | ZEV mandate, information campaigns                                               |  |



#### **Shared mobility**

| Technology      | Sub-type              | TRL  | 2020 penetration                   | Carbon impacts | Role in IEA NZE 2050<br>Scenario                               |
|-----------------|-----------------------|------|------------------------------------|----------------|----------------------------------------------------------------|
| Shared mobility | Ride-hailing          | 9-11 | ~3% US adults are regular users    | Unclear        | "Behaviour" shift?<br>2050: 20-50% less private<br>vehicle use |
|                 | Car-share             | 9-10 | Over 30 million members globally   | Unclear        | "Behaviour" shift?                                             |
|                 | Micromobility         | 9-10 | Available in 650 cities            | Unclear        | "Behaviour" shift?                                             |
|                 | Mobility as a Service | 8    | Very low, dozens of demos globally | Unclear        | "Behaviour" shift?                                             |



#### **Shared mobility**

| Te           | chnology                    | Sub-type        |                                   | TRL                                                     | 2020 penetration                                                                   | Carbo   | 1 impacts Role in IEA NZE 20<br>Scenario                   |                              | 50 |
|--------------|-----------------------------|-----------------|-----------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------|---------|------------------------------------------------------------|------------------------------|----|
| Sh           | hared mobility Ride-hailing |                 | 9-11                              | ~3% US adults are Unclea<br>regular users               |                                                                                    | r       | "Behaviour" shift?<br>2050: 20-50% less pri<br>vehicle use | vate                         |    |
|              |                             | Car-share       |                                   | 9-10                                                    | Over 30 million members globally                                                   | Unclear | ſ                                                          | "Behaviour" shift?           |    |
|              |                             | Micromobility   |                                   | 9-10                                                    | Available in 650 cities                                                            | Unclear | r                                                          | "Behaviour" shift?           |    |
|              |                             | Mobility as a S | ervice                            | 8                                                       | Very low, dozens of demos globally                                                 | Unclear | r                                                          | "Behaviour" shift?           |    |
| Barrier Oppo |                             |                 | Opportunities                     |                                                         | Policies                                                                           |         |                                                            |                              |    |
|              | 1. Consume                  | r preference    | Impro<br>servic<br>demo<br>transi | ove cor<br>ce, edue<br>nstration<br>t (Maa              | nsumer research, improve<br>cation, marketing,<br>on, integration with publi<br>S) | d<br>c  | Carbon/road price, incentives for<br>usage (pooling)       |                              |    |
|              | 2. Increasing               | g VKM           | Suppo<br>transi                   | Support pooling, integration with public transit (MaaS) |                                                                                    |         | Carbon/road price, tolls for single occupancy vehicles     |                              |    |
|              | 3. Uncertain impacts        | GHG             | Integr<br>plans                   | rate wi<br>, pair w                                     | th national/regional GHC<br>with PEV deployment                                    | ł       | Carbon/road price<br>(for car-share, rid                   | e, ZEV mandate<br>e-hailing) |    |



#### **Fully automated vehicles**

| Technology      | Sub-type    | TRL | 2020 penetration   | Carbon impacts          | Role in IEA NZE 2050 |
|-----------------|-------------|-----|--------------------|-------------------------|----------------------|
|                 |             |     |                    |                         | Scenario             |
| Fully automated | Light/heavy | 4+  | Demonstration only | Highly uncertain; halve | Not addressed        |
| vehicles        |             |     |                    | or double GHG           |                      |
|                 |             |     |                    | emissions;              |                      |



#### **Fully automated vehicles**

| Technology      | Sub-type    | TRL | 2020 penetration   | Carbon impacts          | Role in IEA NZE 2050 |
|-----------------|-------------|-----|--------------------|-------------------------|----------------------|
|                 |             |     |                    |                         | Scenario             |
| Fully automated | Light/heavy | 4+  | Demonstration only | Highly uncertain; halve | Not addressed        |
| venicies        |             |     |                    | or double GHG           |                      |
|                 |             |     |                    | emissions;              |                      |

| Barrier                                                           | Opportunities                                                      | Policies                                |
|-------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------|
| 1. Consumer<br>confusion/preference                               | Education, demonstration, participatory engagement                 | R&D support                             |
| 2. Lack of sharing                                                | Consumer engagement,<br>demonstrations                             | Carbon or road pricing, reduced parking |
| 3. Increasing VKM                                                 |                                                                    | Carbon or road pricing, urban planning  |
| 4. Developing country<br>challenges (costs and<br>infrastructure) | Expand tech R&D in developing countries, explore sharing scenarios | R&D support                             |







#### **Climate policies**

| Policy                         | Strengths                                                                                                                                                                                                                                                                                                    | Challenges                                                           |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Pricing                        | Effective, efficient, comprehensive                                                                                                                                                                                                                                                                          | Political opposition                                                 |
| Market-oriented<br>regulations | <ul> <li>ZEV sales mandate: Transformative signal (channels R&amp;D), boosts ZEV sales (cross-price subsidies)</li> <li>Vehicle emissions standard: can act as ZEV mandate</li> <li>Low-carbon fuel standard (LCFS): pushes transformation in low-carbon fuels</li> <li>All: acceptable to public</li> </ul> | Complex,<br>opposition from incumbent<br>industry,<br>how efficient? |
| Incentives                     | Effective (boost sales), political acceptable                                                                                                                                                                                                                                                                | Costly                                                               |
| Chargers deployment            | Addresses crucial barrier, politically acceptable, can help with norms                                                                                                                                                                                                                                       | Not sufficient alone (needs mix)                                     |
| <b>R&amp;D</b> subsidies       | Can help with transformation                                                                                                                                                                                                                                                                                 | Impacts unclear                                                      |



#### Key findings

- Highest technology-readiness (TRL) for plug-in electric light-duty vehicles and buses
- Lower readiness for:
  - Heavy-duty trucks (notably long-haul)
  - Fuel-cell hydrogen vehicles
  - Advanced biofuels (ethanol and biodiesel)
- More research and policy for ZEV manufacturing and disposal
- Shared mobility and automation have unclear roles in decarbonization, though climate policy can induce more climate benefits

#### Potential actions for policymakers

- Plan out complementary policy mix for regional context
- Focus on ZEV sales mandate
- Use low-carbon fuel standard for upstream emissions
- Pricing as complement (if acceptable)
- ZEV purchase incentives help, more short-term
- Charger deployment and R&D support can help
- Improve institutional capacity



# Thank you!



Jonn Axsen, Simon Fraser University