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1. Introduction

The relationship between the net anthropogenic emissions of greenhouse gases
(emissions?) and the resulting change in climate is relevant for several reasons.

The international treaties dealing with the mitigation of climate change are such that
countries will be able to achieve their quantitative emission limitation and reduction
objectives through measures limiting the emission of different greenhouse gases. It is
necessary then to have a metric that allows the addition of emissions of different
greenhouse gases.

The evaluation of the relative responsibility of different countries requires the
estimation of the change in climate resulting from emissions from different sources over
different time periods.

Government and private sector policy makers are faced with the choice among
aternative strategies which result in a change in the mix of greenhouse gas emissions
over time. This choice requires a tool to estimate the result of each aternative in terms
of the future climate.

This note approaches the problem of establishing the time-dependent relationship
between emissions and climate change by reducing the complex dependence of the
increase in global mean surface temperature (temperature increase?) upon emissions to
the simplest possible expression.

It is assumed that the temperature increase DT at time t, as a function of the past

®
emissions e(t') and of al other variables x , is invariant with respect to the addition
operation, that is:

DT (e,(t') +6,(t"), %, t) = DT (&, (t'), X, 1) + DT (e, (t'), X, t) 1)

The acceptance of the concept of carbon dioxide equivalent emissions implies the
acceptance of this assumption. It follows that, in particular, the emissions from
different sources may be added for the same gas, since it is admitted for different gases.
The important question is how to deal with the time dependence of the effect of
emissions, since it is different for different greenhouse gases. The time dependence of
the relationship between emissions and climate change is treated explicitly in this note.

The use of the temperature increase as a measure of climate change is not unique. The
rise in mean sea level and the time rate of change of temperature are aso global

L In this note, the word emissionsiis used, for the sake of brevity, to mean the net anthropogenic emissions
of greenhouse gases, or the difference between anthropogenic emissions by sources and anthropogenic
removals by sinks of greenhouse gases.

2 In this note, the expression temperature increase is used, for the sake of brevity, to mean the increasein
global mean surface temperature resulting from net anthropogenic emissions of greenhouse gases.
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indicators of climate change. The rate of change of the temperature increase and the
extension of the formulation to the mean sea-level rise are also considered in this note.

The Global Warming Potential (GWP) proposed by the Intergovernmental Panel on
Climate Change (IPCC) is a weighting factor used for adding impulse emissions of
different greenhouse gases so that they produce equivalent results in terms of
temperature increase after a specified time lag. It is shown in this note that the IPCC
GWP is aspecial case of a generalized globa warming potential.

The proposal presented by the Government of Brazil for the Kyoto Protocol included,
for illustration purposes, a “policy-maker” model relating emissions to the temperature
increase. It is shown that the “policy-maker” model is also a specia case of the general
formulation.



2. Relationship between emissions, additional concentration, mean radiative
forcing and temperatureincrease

The significant factors affecting the time dependence of the relationship between
emissions and temperature increase are the decay of the additional atmospheric
concentration of greenhouse gases (additional concentration®) and the transient
adjustment of the temperature increase to a changed greenhouse gas concentration.

For the majority of the greenhouse gases, the time dependence of the additional
concentration follows a ssmple exponential decay.

In the case of carbon dioxide, the complex decay of the additional concentration with
time is approximated by a sum of exponentially decaying functions, one for each
fraction of the additional concentrations.

For a constant additional concentration of a greenhouse gas, there is alinear relationship
between this additional concentration and the long-term steady-state temperature
increase. In order to consider the time dependence, however, it is necessary to consider
the transient adjustment of the temperature increase to the additional concentration.
Such adjustment is also approximated by a sum of exponential laws, with fractions
corresponding to different time constants.

All other factors that determine the relationship between emissions and temperature
increase are not ignored, but lumped into the constants.

Non-linearities, such as for instance the non-linear dependence of the infrared
absorption cross-section of carbon dioxide upon the atmospheric concentration, are
ignored and should not affect the relative conclusions obtained with the simplified
formulation, regarding the relative importance of different gases or the relative
contribution of different sources.

An impulse emission of a greenhouse gas does not result in an instantaneous increase of
the same magnitude, due to the removal of a fraction of the emitted gas in atime scale
shorter than the annual scale used. This fact is taken into account by stipulating a
factor, which is applied to the emissions when computing the resulting additional
concentration.

The time-dependent relationship between the emissions and the additional concentration
of a greenhouse gas g is given, in its smplest form, by:

r (0 =b,, &8, (1) G 1, €7 e @
Er=1 u

3 In this note, the expression additional concentration is used, for the sake of brevity, to mean the
additional atmospheric concentration of greenhouse gases due to net anthropogenic emissions of such
gases.



Dr,(t) isthe additiona concentration of greenhouse gas g resulting from emissionsiin
previous times;

b, istheincrease in concentration of greenhouse gas g per unit of annua emission of

that gas;

g,(t) istheannual emission of greenhouse gas g at time t;

R isthetota number of fractions of the additional concentration;

t, isthe exponentia decay time constant of the rth fraction f  of the additiona

concentration of greenhouse gas g.

f. isthe rth fraction of the additional concentration of greenhouse gas g, decaying

ar
exponentially with atime constant t , .

The constraint is imposed that:
&
af =1 ©)

For carbon dioxide, the decay is approximated by 5 exponential functions (R=5); for all
other greenhouse gases, a simple exponential decay isadopted (R=1and f, = 1).

An effective decay time constant T is defined as the weighted mean of the decay time
constants:

R
=a fyty @

r=1

The representation of the decay by a sum of exponentia functions is only an empirical
approximation to the observational data There is thus no meaning to a single

exponential decaying with the effective decay time constant €, . This definition is
nevertheless useful as a constant in some of the expressions.

For greenhouse gases with exponential decay of the additional concentration, the fact
that the emissions are specified as their annual values, implies a value of b different

from one; indeed, if emissions are constant over a period of length DT , the additional
concentration at the end of the period is:

_ N -t/tg
Dr, =€, Q e dt

=g t, [1- &™) (5)



or, for a period of one year and the time constant t | expressed in years,

bg :tg(l' e_l/tg) (6)

The relationship between the additional concentration of greenhouse gas g and the
resulting increase in mean radiative forcing is given by:

DQ,(t)=5, D (t) (7
where:

D(jg(t) is the mean rate of deposition of energy on the earth’s surface, or mean
radiative forcing, per unit of additional concentration of greenhouse gas g;

§, s the change in mean radiative forcing per unit of additional concentration of

greenhouse gas g.

The time-dependent relationship between the mean radiative forcing and the resulting
temperature increase can be approximated by considering the results of full climate
models and fitting exponential functions to their results. Such results indicate that the
temperature increase response to an instantaneous doubling of the carbon dioxide
concentration and therefore of the mean radiative forcing can be approximated by a
function of the type:

& & .U
DT, (t) = constant gl al. et“csbj )
s=1

It follows that the response function to an impulse of additional concentration is its time
derivative:

éOS |s —t/tcsu
DT, (t) = constant aa " e g 9
€s1 tcs u

The time-dependent relationship between the mean radiative forcing and the resulting
temperature increase is then given by:

B ‘s o

DTg t)=@1/C) C\tL DQg(t') gé |, A/ty)e t-t/te Bdt' (20
Es=1 u

where:

C isthe heat capacity of the climate system;

S isthe total number of fractions of the radiative forcing;



|, isthesth fraction of the radiative forcing that reaches adjustment exponentialy with

S

atime constant t .

The constraint is imposed that:

$
41.=1 (12)

s=1

t . IS the exponential adjustment time constant of the sth fraction |s of the temperature
increase.

An effective temperature increase adjustment time constant t', is defined as the inverse

of the weighted mean of the inverse of the temperature increase adjustment time
constants. Here, again, this concept is useful even though there is ho meaning to an
exponential function with this time constant.

f= ™ (12)
al. wty)

1

The combination of expressions (7) and (10) provide the relationship between the
additional concentration of greenhouse gas g and the resulting temperature increase:

e .
DT, (1) =(W/C)§, §,Dr , () gé’}l L (Ut ) e'“-”“csé dt’ (13)

The combination of expressions (2) and (13) results in an expression relating the
emissions of greenhouse gas g directly to the temperature increase:

N
0%

—(1/C)s b 11y m €2 ¢ Syt U
DT, (t) =@/ C)s, gQ%Qeg(t) : o € H

&

n[;.léos - \L- l:l 1
di"yaa I, Wt ) e = dt
E€s=1 u

D

r

(14)

3. Normalized response functions

The relationships introduced in the preceding section can be expressed in terms of a
constant, specific for each gas, multiplied by a normalized response function
representing the time dependence. The normalization is different for each response
function: the appropriate constant is chosen so that the normalized response functions
for the different greenhouse gases are of similar magnitude.

The introduction of the normalized response functions allows the time-dependent
portion of the relationship between two variables to be represented by the convolution
of the independent variable with the normalized response function.



From emissions to additional concentration

The relationship between emissions and additional concentration in expression (2) can
be written as:

\t 1 1 1
Drg(t):ngeg(t)Fg(t-t)dt (15
where:
OR 5 Stltg,
Ft)=a fg Fat)=a fa e ° (16)
r=1 r=1
F t)=¢e"" (17)

F ,(t) isthe normalized additional concentration response function to an impulse of

emission, and F  (t) areits components.

It follows from expression (15) that the additional concentration resulting from an
impulse emission at timet = 0, of value e , is.

Dr () =b, e, F (1) (18)

The constant in the definition of the response function is such that F (0)=1 . The

normalized additional concentration response function to an impulse of emission F (t)

is positive definite; it starts at one, decreases monotonically and tends asymptotically to
zero at infinity.

The additional concentration resulting from constant emissions starting at t = 0, and of
vaue € is.
R

. N e _ = o —
Dr () =b, e, QFg(t-t)dthgt_geg Fg(t):bgtgegéfgrl:g,(t)

r=1

R
=b,t, & a fqu [1- tq /e (19)
r=1
= _ -ty
F,0=1-¢,/t,)e (20)

where Eg(t) is the normalized additional concentration response function to constant

emissionsand F o (t) areits components.

The constant in the definition of the response functions is such that Itl(grgé Eg (t)=1. The



normalized additional concentration response function to constant emissions Eg(t) is

positive definite; it starts at zero, increases monotonically and tends asymptotically to 1
at infinity.

From additional concentration to temperature increase

The relationship between additional concentration and temperature increase in
expression (13) can be written as.

or, () = 2% o @y Q- 1 dr 21
(0 ===, (0 Q-1 (21)

where:

QY =al:Q.m=al E/ts) e (22)

Q. ()=, /t )e (23)

Q(t) is the normalized temperature increase response function to an impulse of
additional concentration, and Q(t) are its components.

It follows from expression (21) that the temperature increase resulting from an impulse

of additional concentration at timet =0, of value Dr , , is:
L/C)s,
DTy (1) = ——— Dreo QU (24)

c

The constant in the definition of the response function is such that Q(0) =1 . The

normalized temperature increase response function to an impulse of additional
concentration is positive definite; it starts at one, decreases monotonically and tends
asymptotically to zero at infinity.

The temperature increase resulting from constant additional concentration starting at t =
0, and of value D, is:

@/C) Sy ¢ I S —
DT, (t) = — DF, QQ(t- t) dt' = (1/C)§, DY, Q) = (1/C)s, Dy Al Q(t)
=(@1/C)s, D és_ls 1- e''=) (25)
Q.(t)=1- et~ (26)
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where Q(t) is the normalized temperature increase response function to constant
additional concentration and Q,(t) are its components.

The constant in the definition of the response functions is such that lt'gl Q(t)=1. The

normalized temperature increase response function to constant additional concentration,
Q(t) is positive definite; it starts at zero, increases monotonicaly and tends
asymptotically to 1 at infinity.

Climate sensitivity

The asymptotic value of the temperature increase for a constant additional concentration
of carbon dioxide starting at t = 0 and of value equal to the initial concentration is called
the climate sengitivity. It is also described as the temperature increase for a doubling of
the carbon dioxide concentration. It follows from (25) that:

cs =(1/C)Sco, T co, (27)

and therefore

We)y=—>— (28)
S co,l co,i

where:

I co; IS theinitial carbon dioxide concentration that, as it is increased by the same
amount, results in a temperature increase equal to the climate sensitivity.

From emissions to temperature increase

The relationship between emissions and temperature increase in expression (14) can be
written as:

- \t 1 1 ]

DT, (1) =(/C)§, by Ty (& (1) Y, (t- 1) ct (29)
where:

g, & s & ty /T ' .
Yg(t) =a ls a fgrYgrs(t) =a lsa fgr M(e”tgr - € t/tcs) (30)

sl r=1 sl r=1 (t ar tcs)

(t r/t_) -t/t -t/t
Yoty =————— (""" - ') (31)
’ (t gr - t(s)

Y, (t) is the normalized temperature increase response function to an impulse of

1



emission, and Y _ . (t) areits components.

grs

Fort, equatot  ,expression (31) containsthe division of zero by zero. The limit in

thiscaseis:

; _ t the t -t/ty
Ilgt]g Ygrs(t) - (32)

- =
" (t_g t cs) (t_g t gr)

tCS

It follows from expression (29) that the temperature increase resulting from an impulse

of emission a timet =0, of value e, , is:

DT, (1) = (LIC)§, b, T, e,,Y, () (33)

The congtant in the definition of the response function is such that 5Yg (t)dt=1.

The normalized temperature increase response function to an impulse of emission,
Y, (t) is postive definite; it starts at zero, reaches a maximum and then tends
asymptotically to zero at infinity.

The temperature increase resulting from constant emissions starting at t = 0, and of

vaue €, is:

_ o N _ J—
DT, () = (1/C)S, b, €, & (Y, (t-t) d =(1/C)s, b, T, & Y, (1)

S R
_ R o) tva
=(1/C)5, b, [, &, qllsa_l far Yars(D)

R

$ é t /T O
=(1/C)s, b, €& é_lsé_ fo g]_- M&gr otte tcse_mcs)l;l

(tgr _tcs)

s=1 r=1

(34)
_ ty /T
Y. () =1- Oy 1Te) &g, ety e"“cs) (35)

where Vg (t) is the normalized temperature increase response function for constant
emissionsand Y (t) areitscomponents.

grs

Fort, equatot  ,expression (35) containsthe division of zero by zero. The limit in

thiscaseis:

lim Y, (t) =1-

tes®tg T 1

(36)



The constant in the definition of the response function is such that |tl®nl Vg (t)=1. The

normalized temperature increase response function to constant emissions, Vg t) is

positive definite; it starts at zero, increases monotonically and tends asymptoticaly to 1
at infinity.

The temperature efficiency of a greenhouse gas

The constant factor in the expressions for the temperature increase as a function of
emissions is defined as the temperature efficiency of a greenhouse gas, which can be
written, with the help of expression (28), in terms of the climate sensitivity:

K = _9 9 9 (37)

S co, I co,i

With this definition, the expressions for the additional concentration and temperature
increase can be rewritten as:

Kg N N oH )
lﬂuozii?;i—QDnﬁ)Qaw)m 1)
K, ,
mwpiﬁﬁmeqn 24)
Kg — y
mwpbﬁhmgqo (25)
muo:KgderYJLt)w (29)
DT, (t) = K, e, Y 4 (1) (33)
DT, (t) =K, & Y,(t) (34)

From emissions to temperature rate of change

The time rate of change of temperature is obtained by taking the derivative with respect
to time of expression (30) and applying the result to expression (29'):

d DT, (t) S 5 t (t,/t,) et ey
— 97 =K, 31l.af, ge, t)—EZ L |wt )e e it )e e |t
dt gélsgl grQ g( ) (t -t ) ( (s) ( gr)

The relationship between emissions and time rate of change of the temperature increase
can be written as:

doT,() _ K
dt £,

E_d%@quwm (39)
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where:

OS (')? oS éq t rt_c / - t/t
Lg(t):alsa fgr Lgrs(t):alsa fgrg—[(lltcs)e-ttcs' (1/tgr)e ”
s=1 r=1 s=1 r=1 (t ar - tcs)
(40)
t rt_c é - - ,l]
L 4o() = (t'é’—t) gllt Selte - @ )e't q (42)
ar cs

Fort, equaltot , expression (41) contains the division of zero by zero. The limit in
thiscaseis:

t"&‘ Lo =@ /te) Q- t/t) e =@, /t,) - t/t,)e"” (42)

grs

L ,(t) isthe normalized temperature rate of change response function to an impulse of

emission, and L __(t) areits components..

grs

It follows from expression (39) that the temperature rate of change resulting from an
impulse of emission at timet = 0, of value e, , is:

DT,() _ K,
dt .0,

c

€g L () (43)

The constant in the definition of the response function is such that L ((0)=1 . The

normalized temperature rate of change response function to an impulse of emission,
L, (t) starts with the value one; it is initidly positive, then negative and tends

asymptotically to zero as time tends to infinity.

The temperature rate of change resulting from constant emissions starting at t = 0, and

of value &, , IS

IO _ K o & @-tydr=K, & T,0=K, & &1L&f, T
it tr, °Q (A& 0766 2k a o be®
- € /0 e,
=K, & al.a fy 5 (E"-et) (44)
s=1 r=1 (tgr tcs)
— (t or /rg) -t/ -t/t
L,.l)=————( *-¢e = 45
ors (D) (tgr-tcs)( ) (45)
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where fg (t) is the normalized temperature rate of change response function to
constant emissionsand L (t) areitscomponents.

ars

This expression is the same as that for the normalized temperature increase response
function to an impulse of emission (fgrs(t) = Ygrs(t)) , Which is to be expected since

L ,(t) resultsfrom taking the time integral and derivative of Y, (t) .

The constant in the definition of the response function is such that éfg(t) dt =1.

The normalized temperature rate of change response function to constant emissions is
positive definite; it starts at zero, reaches a maximum and then tends asymptotically to
zero a infinity.

From emissions to mean sea level rise

The rise in mean sea level can be approximated by a multiple exponential response to a
constant temperature increase starting at t =0 :

_ M
Dmsl(t) =DT, ML (1-  h, €'"'") (46)
m=1

where:

Dmsl (t) is the mean sea level rise resulting from a constant temperature increase in
temperature starting at timet =0 ;

D'IT@J is the value of the constant temperature increase;

ML is the asymptotic value of the mean sea level rise per unit of constant temperature
increase;

hm isthe m" fraction of the mean sea level rise that adjusts exponentially with the time
constant t . ;

t  isthe exponentia adjustment time constant of the fraction hp,.

m

It follows that the mean sea level rise response to an impulse of temperature increase of
unit valueis:

M
Dmsl () =MSL @ h, (Lt ) e (47)

m=1

The time-dependent relationship between the temperature increase and mean sea level
rise is then given by:
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Dmsl , (t) = MSL d DT (t') %{ h, @/t ) e 0" dt (48)

m=1

Substitution of the expression for the temperature increase from (29') results in:

.o u |
Dmsl , (t) = MSL (‘igKg Q, & (") Y (t- 1) dt"gé he (Ut ) € © 0 d

m=1

S ) g (t ar / (t_g t m)) NN -(U-t) 7t - (-t /t U A (t-t)/t
ah e (t") (e “-e s)dt'ze mdt’
s=1 r=1 m=1 (t g - t cs) 0¥ & ¢ )
(49)

The relationship between emissions and mean sea leve rise in expression (49) can be
written as:

DMl (t) = MSL K, de(t') W, (- t) dt’ (50)

where;

W, (t) = al a fgrah Woram() =

s=l r=1 m=1
:é| 5 f é_ h (L g g (e-t/tgr ) e-t/tm)_ ts (e-t/tCs ) e-t/tm)g
s:lsr:l grm:lm (tgr-tcs) é(tgr-tm) (tcs-tm) g
(51)
W (t)= (t ar /t_g) g tgr (e-t/t v e-t/tm)_ tcs (e-t/tcs _ e-t/tm)g (52)
Tty ty) 8ty -t (tes-tn) g

For two or three equal valuesof t  , t  andt , expression (52) contains the division
of zero by zero. The limitsin these cases are:

t /t e _ t ) u
Ilm Wgrsn( )_ ( ) é t e tty - ¢ (e-l/lCS -e tit o )[:|=
ty-te) gty tos-tg) g (53
_ ¢, /t ) ét o ttn #(e'm“ ) e-mm)g
- €
-t S) étm t s 1 m) a
(t ) é t ) ¢ i
I|m Wgrsm(t)— 9’ & o (e ity e-t/tcs)_ e tte =
(t o tes) @(t o tes) e a (54)
— ( or /t g) Z tgr (e—tltgr _ e-t/tm)_ t e—t/tmg
(tgr'tm) é(tgr'tm) t g
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t/f t t It
im Wgrsm('[) - ( g) e't/tcs _ ( cs-m gz) (e-t/tCS _ e-t/tm)z
ty®tes (t cs tm) (t cs t m) (55)
_ (t/t,) ot t grtm/t‘gz) (e.mg, ) e.mm)
(tgr_tm) (tgr_tm)

t!jr@qmwg,sm(t) =T, @ razye"r =@, (P /2al) e =@, @ ral)et
tes®tpm

(56)
W, (t) is the normalized mean sea level rise response function to an impulse of
emission, and W,

grsm

(t) areits components..

It follows from expression (50) that the mean sea level rise resulting from an impulse of

emission at timet = 0, of value e, , is:

Dmsl (1) = MSL K, e, W, (t) (57)

The constant in the definition of the response function is such that 6W9 (tydt=1.

The normalized mean sea level rise response function to an impulse of emission, W, (t)

is positive definite; it starts with the value zero, is initialy positive, then negative and
tends asymptotically to zero as time tends to infinity.

The mean sea level rise resulting from constant emissions starting at t = 0, and of value

eg , IS

_ S R M -
Dmsl (1) = MSL K, &, (f)wg (t-t)dt'=ML K, & W, (t) =MSLK, & & s & fy Q hw Wy(t)

=1 r=1 m=1

§L ] tg /T )t ol 3
_ & & 6 (Mg -tp)ly-ty)
_waK,s A4 ane Grtnlets 2 :
s r=1 e_}_ (t o /t g)tcs ortite (t or /t_g)tm e-t/tml]
§ -ty -ty) Cg-tn)ts-ty) 4
(58)
%-_ (t (tir/)t_(gt)tgft ) “thty 8
—_ e r-tm r~ tes u
Wyam®=a —° 77 . d 9
(:e+ (tgr/tg)tcs e e _ (tgr/tg)tm e-t/tmL:j
8 (tcs-tm)(tgr_tcs) (tgr-tm)(tcs_tm) H

where Wg(t) is the normalized mean sea level rise response function to constant
emissonsand W, (t) areits components.

grsm
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For two or three equal valuesof t , , t ¢ andt  , expression (59) contains the division
of zero by zero. The limitsin these cases are:

éee 0 t2 u
Jim W, (t) =1+ th — it & g'ey=
tm m) [} (t s t m) Q
t /T éxe t 2 o) 2 U
=1+ M th o o +tie'“tgr _ t—cs e—t/tCSl:I
(tcs-tgr) (tcs-tgr) g (tcs-tgr) g
(60)
t IT) éx 2 o) t?2 o
lim Wgrsm(t):1+—( o /To) B RS N VST A L
tes®tm (t ar -tm) (t ar tm) g (t gr -tm) g
o 16,) &e o) t2 u
=1+ ) 2t +te e & gy
-t ) - cs) g (t ar t cs) Q
(62)
6 2 0
im W, () =1+ 'Ta)_ th v gt Inetegs
tor®tos m_ gr m_ gr) o (tm_tgr) H
</Ty) éx t? u
=1+ ) th +t-e -—nn 'y
-t ) cs) 1] (t m - tcs) Q
(62)
im W,,.,(1) =1- (t,,/f,) L+ (trt,)+ @2/ (2t2))et”
et
=1- (t, /T,) [+ (t/t,) + (2 1 (2t 2))) e = (63)

=1- (1o /T) L+ @/t ) + @2/ (2t 2))e =

The constant in the definition of the response function is such that |tl(g];! Wg t)=1. The

normalized mean sea level rise response function to constant emissions is positive
definite; it starts at zero, increases monotonically and tends asymptotically to 1 at
infinity.
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4. Global warming potentials

A “carbon dioxide equivalent emission” is defined by means of a factor for each
greenhouse gas other than carbon dioxide, such that their emissions may be added to
those of carbon dioxide, after weighting by the respective factor.

The criterion used to choose the weighting factors is that the temperature increase after

a specified time lag is the same as that which would be produced if there was a carbon
dioxide emission equa in value to the carbon dioxide equivalent emission. Each

19



weighting factor is referred to as the global warming potentia for greenhouse gas g.
Thus, in generd:

€co, equiv(t) =€, (t)+ E:ol €, (t) Gb (64)

where

é indicates a summation over the greenhouse gases other than carbon dioxide and
¢]

G, isthegloba warming potential for greenhouse gas g, for a specified time lag.

In order to find the expression and time-dependence of the weighting factor, the
temperature increase due to emissions of carbon dioxide and of other gases can be
written from (29), with the definition of (64), as:

DT(0) = Koo, (), oo, (1) + & €,1) Gy (t- 1) § Yo, (t- 1) (©5)
é g ]

where

Gy(t) =—a o) (66)

K(:o2 Yco2 (t)
is the globa warming potential for greenhouse gas g and time lag t.

The global warming potential can be written as a constant for each greenhouse gas,
multiplied by a normalized global warming potential; after noting that

@0 Yco2 ®) t

and requiring that g ,(0) =1 :

g

S b
G(t)=—22 g (1) (67)

Co, b Cco,

R

C>S [o] tgr -t/t -t/t
alsafy, ———@€ *-¢e"=)
s-lsr=1 ° (tgr_tcs)

g,(t) =—5—— . (68)
o 4 cor ~t/t ooy 4/t
a Is a f r (e Y- )
s1 2 o (t cor - t cs)

For impulse emissions at t = 0, of vaues e, , and ey , the resulting temperature
increase can be written, from expression (33'), as:



DT() = Keo, o000 + & €40(1) G 1) 4 Yo, (1) (69)
e g u

For constant emissions starting a t = O, of values &, and €, the resulting

temperature increase can be written, from expression (34'), as.

DT (1) = Keo, [6co, +8, G )] Voo, (70

where:

_ K.Y, (t)

G =—"=" (71)
Kco2 Yco2 (t)

is defined as the global warming potential commitment of greenhouse gas g and time
lagt.

The global warming potential commitment can be written as a constant for each
greenhouse gas, multiplied by a normalized global warming potential commitment,

Y., (1) t‘Co . _
after noting that I|m 1 =—= andrequiring that g,(0) =1:
Yo, () r
o by T _
G = b 0, (1) (72)
0, ~co, c:o2

s &8 6 (/)
aLafg iyt e el
9,(0) = é (t g IT.) N (739)
é Is é. CO,r é—' M( CO, Hheo tw emcs)l;'
e (t CO,r ~ tcs) o

The IPCC GWP

The Intergovernmental Panel on Climate Change — IPCC defined GWRP(t) as the ratio of
the accumulated radiative forcing at time t, resulting from a unit impulse of additional
concentration of greenhouse gas g at time t=0, and the accumulated radiative forcing at
time t, resulting from a unit impulse of additional concentration of carbon dioxide at
time t=0.

There is a fundamenta difficulty with this definition, in that the accumulated radiative
forcing is a variable that, once it reaches a certain value, it never returns to zero, even
when the additional concentration returns to zero if al emissions are stopped.

The ratio adopted by the IPCC also corresponds to the ratio of temperature increases,
under the same conditions, and with two additiona limiting conditions: first, that all
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additional concentration exponential decay time constants ty be very short in
comparison with any of the temperature increase adjustment time constant t.s ; and
second, that the lag time t be much shorter than any t. In addition, the definition of the
IPCC GWP(t) refers to a unit increase in additional concentration at time t=0, while the

definition in this note refers to a unit impulse of emission, the difference between the
two being the factor b .

The definition of the IPCC GWP(t), in the notation used in this note, is:

t 1
@S, D (t')dt
GWP, (t) = ——

74
@S co, Dr o, (t') dt’ (7

It is to be noted that the IPCC uses the column value of the constant s , rather than the
mean value §~ introduced in this note. To the extent that these constants appear only in
the form of the ratio of the constant for a greenhouse gas to that for carbon dioxide, the
difference is neglected in what follows.

Taking expression (2) for the additional concentration when b, =1 and for an impulse
of concentration of value equal to one at timet = O:

R
Dr,0) =8 f, e (75)

r=1
Substituting this value in expression (72):

R '
GVVF’g (t) = , gl »
C?)'Sco2 a fcozr e ¥ dt

=1

-

R
s, 8 faty @-e'')

g

= = (76)

R

2 -t/ coyr
S’coZ a fCOZrtCOZr (1' € 2)

r=1

The expression for the global warming potential as defined in this note is, from
expressions (67) and (68):

s R t
o o gr -t/tg, _ -t/
bys, Qlls 21fgr —(t ) (e e
G(t) = : (77)
b oSI oR f CO,r _t/tcozr “tltes
co,Sco, dls a o (e -€

fsl sl 7 (tCOZr-tcs)



Considering the case whent <<tand t , <<t foral valuesof sandr, and both b
and b, areequal toone:

lfgr t ar (1_ e-t/tgr)
(78)

o _t/tCOzr
S co, a1 co,r Loy 1-e )
r=

Sy

R
i1 Qoxp

G,(t) =

which is the same as expression (75) for the IPCC GWP(t).

It follows that the IPCC GWR(t) is a specia case of the global warming potential G, (t)

defined in this note, for the case when b and b, are taken to be equa to 1, and the
temperature increase adjustment time constant tends to infinity.

The “policy-maker model” of the Brazilian Proposal

The government of Brazil submitted to the Secretariat of the United Nations Framework
Convention on Climate Change a proposal of elements of a protocol to that Convention
in 1997. That proposal contained the suggestion of a “policy-maker” model as a simple
means to translate emissions into temperature increase.

In the notation used in this note, the “policy-maker” modd is:

DT,(t) =(/C)s , b, dgd e, (te dt"g dt’ (79)

Inspection shows that this is the same as expression (14) in this note, with two
approximations.

The temperature increase adjustment term is omitted in the Brazilian proposal, which is
equivalent to considering the limit for the temperature increase adjustment time period
tending to infinity. Such approximation is aso made in the definition of the IPCC
GWHP(t).

The decay of the additional concentration is taken to follow a simple exponential law,
that is, R is taken to be equal to one for al gases.

Even though the “policy-maker” model did not include the concept of a global warming

potential, it is clear that it implies one such concept, which is similar to that of the IPCC
GWP, with the addition of the constants b .

5. Non-linearitiesin the climate change response to emissions
There are certain non- linearities in the functional relationships between the emissions

and the resulting climate response. Because these non- linearities affect the forcing of
climate change, they are intrinsically different from the internal non-linearities in the
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dynamics of the climate system. The latter are implicitly taken into account by the full
atmosphere-ocean coupled general circulation models that are used for the derivation of
the climate sensitivity.

The treatment of the non- linearities has two aspects to it. One is the estimation of the
climate response to global emissions. The other is the response of the climate system to
small changes in emissions from individual sources, this being the approach relevant to
the attribution of cause to individual sources.

In this section, consideration is given to both the global and perturbation effect of the
nor- linearities associated with the non-linear dependence of the additional
concentration upon emissions of carbon dioxide, and the non-linear dependence of the
radiative forcing upon the additional concentration of carbon dioxide, methane and
nitrous oxide.

Non-linear response of the additional concentration of carbon dioxide to emissions

The additional concentration of most greenhouse gases other than carbon dioxide can be
well represented by a linear combination of the additional concentrations resulting from
emissions by different sources. In the case of carbon dioxide this is not true for long
periods of time, both due to the saturation of the carbon dioxide fertilization effect, and
the saturation of the ocean surface waters.

The treatment of this non-linearity for global emissions can only be done with the use of
a full carbon cycle model. For the purposes of this note, the "Bern" model (Joss et 4,
1996)* is used. The "Bern" model was used in conjunction with a prescribed emissions
scenario to compute the resulting additional concentration of carbon dioxide both for the
prescribed emissions and the same with the superposition of a conveniently small pulse
of emission, of magnitude 0.001GtC, at different pointsin time from 1770 to 2100.

For each starting time of the emission pulse, the resulting perturbation in atmospheric
concentration was obtained by subtracting from the concentration resulting from the
pulse perturbed emissions, that resulting from the prescribed unperturbed emissions.

In each case the perturbation in atmospheric concentration was expressed as a linear
combination of exponential functions, with the same 10 characteristic exponentia time
constants used in the Bern model, and coefficients determined by a least-square
technique. It was found that this representation does not depart from the results of the
calculation by more than 3% in the case of a pulse in 1770, and not more than .2% for a
pulse in 1990.

The application of this result into (14) results in the following expression (where it is to
be noted that the coefficients f  are now afunction of t"):

* The Fortran code of the HILDA, or Bern model, was kindly supplied by Prof. Fortunat Joos
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N , ’ R S
DT, (1) =(1/C)s, b, Qi deg(t") gé_ f, (") e (-t Ity udt .Z A, Wty e-(t—t')/tcsgdtu
|

€r=1 €s=1 u

(80)

This relationship between emissions and temperature increase can be written in a form
similar, but not equal, to that of expressions (29) to (31). Substitution of (30) into (29)
together with the recognition that f . isafunction of time resultsin:

DT, (1) =@/ C)s, b, T, Qe (t a Isa fg (' )M(e Ute _ g tte) dt’
s=1 r=1 (t ar - cs)
(81)
where
T 40 ISthe effective time constant computed with the values f (t,).
Individual components of the temperature increase can be defined by means of
&
DT (t)=a fq (to) DTy () (82)

r=1

Then,

gr( ) | ( t_grO)( -/t

DT, (1) = L/C)S, b Ty, Qe () f ) S e'lte - g lte)dt! (83)

A component normalized temperature increase response function to an impulse of
emission can be defined as:

o
Vo0 =81 e ) @

so that an individual component of the temperature increase can be written as:

(fq (t)- fy (t) U
fgr (to)

DT, (©)=(W/C)S, by Tyo (), € (t)él Y o (t- )t (85)
$]

The term is square brackets can be interpreted as either a correction to the emission
pulse a time t' or, aternatively, as a factor, dependent upon t', that affects the
component normalized temperature increase response function. If wished, it can be
written as a power series in the variable (t-1p):
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" 0
é ggrm(t - tO)mgy gr (t' tl) dt’ (86)
m= u

1

¢ e
DT, () =(L/C)Sy by Q, & (1) e+
e

with the coefficients g, determined by a least-square technique from the results of a

perturbation run of a carbon-cycle model. This expression is only valid within the
period for which the coefficients were determined.

Non-linear response of the mean radiative forcing to additional concentration

The mean radiative forcing §7; is actually not constant, but rather it is a function of the

atmospheric concentration, for carbon dioxide, methane and nitrous oxide. Expression
(7) should then be modified to:

DQ 4(t) =S ,(Dr 4 (1)) Dr 4 (1) (87)
Substitution into (10) results in a modified expression (13), which can be written in

terms of the temperature increase response function to an impulse of additional
concentration:

. \
DT, (1) =(0/C) §,5,(Dr (1)) Dr §(t) a1, Wty) e ot § dt’ (89)

es=1

or, using the definition of the normalized temperature increase response function to an
impulse of additional concentration from (22),

DT, ()= ——¢ cs égg(Dr S(t) Dr S (t') Q(t - t') dt (89)

c 2 Cco, ' Coj
where the superscript G refers to global additional concentrations.

Combination with expression (2) provides the expression for the relationship between
global emissions of greenhouse gas g and the resulting temperature increase, written
with use of the temperature increase response function to an impulse of additional
concentration and the additional concentration response function to an impulse of
emission:

DT, () =(W/C) b, (,5, gaeg t)F (- t)gd e, (t)F ("t dt"}Q(t _t)dt (90)

This formula can only be used with numerical integration, because the non-linear
dependence of the radiative forcing upon the atmospheric concentration of carbon
dioxide, methane and nitrous oxide are such that an analytical solution can not be found.

In the specia case of constant emissions, expression (89) is simplified and the
asymptotic limit of the temperature increase as time tends to infinity can be written as:
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S,UmDry®)cs s (b, r,e%)cs
lim DT 2 (t) = ——&¥ =—9 9 9 ¢ (91)

¥ S co, (r COZi) S co, (r COzi)

Non-linear attribution of climate change for prescribed additional concentrations

When using the response functions to estimate the relative effect of emissions from
different sources, prescribed atmospheric concentrations can be used to determine the
appropriate mean radiative forcing. An analytical expression for the response functions
can be found if the time dependence of the mean radiative forcing is expressed as a
power series, truncated to provide the desired accuracy.

Given atmospheric concentration data for a certain period of time r (t) , the mean
radiative forcing can be written as:

& % 0
S_g(t)zs_g(rg(t)) :S_go §L+aagn (t' to) lil (92)
e n=1 u

where:

S 4 isthemean radiative forcing at timeto ;

Ng isthe order of the expansion;

a ,, are coefficients determined from the data by aleast square technique;

Substitution of expression (91) into the full expression (14) for the temperature increase
allows the determination of the normalized temperature increase response function
taking into account the non-linearity in the relationship between additional
concentration and mean radiative forcing:

I tar é’]_+ a n! (t- to)n_k U u

€. IE) i ‘?}1 9”90( Y o Gty

Y (t) gr g | g g y
e (t ar - t(S) | e't/tcs g- gg g ( ) nl (' to)n_k

: & Tadnd (- K ((ty -t/ ot ) EI'O

(93)

This expression is only valid within the time period for which the coefficients a ,, were
obtained.

27



6. The effect of emissionsover specified time periods

The separation of the effects of emissions occurring over different time periods can be
obtained by separating the time integrals into a sum of integrals over each time interval
previous to the time of interest.

For the sake of simplicity in the notation, the variables and functions in this section are
written in terms of their s and r components. The full expressions are then obtained by
summing over the components after weighting with the factors Is and fg, as appropriate.

Care should be taken, however, that the summation over the components can only be
made for the full expression. There are products in the expressions, and the addition
and multiplication operations cannot be interchanged.

The following notation is introduced for the additional concentration and temperature
increase components, respectively, at the end of the time period (ta , tp) , resulting from

emissions during that time period.
Dr  (t,,t,) =b, (‘ébeg (t') F o (t, - t') dt’ (94)
and

DT, (t, . t,) =K, (f',:eg(t') Yot - t) (95)

Emissions over several periods

The time before t is divided into n+1 intervals, (-¥ , to), (to, ta), ..., (tn1, th), (ta, t) . The
relationship between emissions and the additional concentration components can then
be written as:

Dr (1)=Dr, (-¥,0)=b, g e,(t)F, (t-t)d'=

g

_’p/,,

g
t

g
n

O &) Fy (t- t)dt + b, 6eg(t') F(t-t)d

n-1

=b, (), & (t) Fy (t- ) '+ b, (fjeg(t')Fg,(t- )t +..... +

+Db

g

=b, & () & (1) F o (t-t)dt'+b, (‘éeg (t')F 4 (t- ) dt (96)

=0 i-1

where it is understood that t.1 representst tending to minus infinity.

This expression contains integrals of the following type, which can be rewritten as
shown:

6e(t') g Ot G = gt (‘58@') et gt = g )t Ct)be(t') g (o t)/t G (97)
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The use of this equality alows the additional concentration component to be written as:
Dr 4 (t) = b, a e g ey t) e di by Gy () e dr (98)

The use of the definition of the normalized response function from expression (17)
alows the additional concentration component to be written in the following two
equivalent forms:

Dr g (1) =8 DF g (tis  6) F gr(t- )+ Dr g (ta, ) (99)
i=0

Dr gr(t) = gé Dr ar (ti—l ’ti) F ar (tn - t|)EF gr(t - tn) +Dr ar (tn ’t) (100)
€i=0 u

It is possible to write the full expression for the additional concentration, by defining
modified weighting factors 'y, , as follows:

R

Dr o (t) =Dr o (t,) & fy Fo(t-t,) +Drg(t,,1) (101)
r=1

where;

é Dr gr (ti—l ’ti) Fgr (tn - t|)

flo=f, - (102)
g 9 Dr ,(t,)

A similar development can be made starting with expression (97) for the temperature
increase component as a function of emissions:

DTgrs(t) grs( ¥ t) = g Qe (t)Ygrs(t t)dt

=K, & 0 € (1) Y galt- 1) '+ Ky Oy (1) Y gt~ 1)t (103)

i=0

N - -t - (t-t: N\ - (ti-t" ) U

L, IT ) ge t-t) Ity q‘) e, (') e GOty o o (6t 6 e, (t) e (1)t dt.a +T

-1 i-1 y

(t tCS) | Q (tl) (e'(t't')/tg - e'(t- t')/tcs)dtv |

b
(104)

DT, (t) =



The above expression can be rewritten by subtracting and adding to the first line the
integral in the left multiplied by the exponential factor with the constant t . and

regrouping:

\ . ..
I Q’e () dr - @V G ey ) e dr -0 8
K, t,/t,) jde l:|+:|:
— g \Vog'tgl L. 52 (tt) It o (4-t)/t P (G-t tg e ,
DT,.(t) —(t ) : 5 e Q g, (t) e dt' + e O e, (t) e dtH ?/
;+Ct)eg (t)( t-t)/ty e—(t—t')/tcs)dtv i)

: g g(e )ity e (t—ti)/tcs)c\; eg (t') e-(q-t')/tg dt'+g :,I

) jd é o ati

- K(tg (t grt/t ;) 1|, i=0 g_ e (t-t)/t 6 eg(t') (e-(n-t')/tg - e (t- t)/tcs)dtIH 1,/ (105
ToT : N -(t-t)/t S(t-t) It . :
T+Qeg(t)( v -e€ cs)dt b

The use of the definition of the normalized response functions alows the temperature
increase component to be written in the following two equivalent forms:

DTQFS(t) = (t cs /t_c) én DTgrs(ti-l’ t|) Qs(t - ti ) +
i=0

(t- 1)+ (106)

i-l'ti ) Y

gr grs

g i=0
+ DT, (t, ,t)

ars

or

€y @ K ou
DT, (t) =t /T.) éa &l o /T) DT (t.,.t) Q(t, - t) + 5 Dr o (.0 t) Y g (t, - ) 20Q (- t) +

§i=0 g w

K

én
g gé Dr o (t...t)F o (t, - ti)UYgfs(t )t
g €i=0

+ DTgrs (tn ' t)

(107)

It is possible to write the full expression for the temperature increase, by using the
modified weighting factors f'g,  and defining a modified weighting factor I's , as
follows:



DT, (t) = DT, (t,) és l, Qq(t-t,) +

K, s 8
+ b Drg(tn) a IS a fgr Ygrs(t - tn) + (108)
g s=1 r=1
+ DTg(tn 1t)
where:
. g€ K, y
(t cs /t_c)a_.1 fgr a_(.) gt cs/t C)DTgrs(ti-l , t|) Qs(tn - tl) + b_ Dr ar (ti-l'ti) Ygrs(tn - tl)a
I =I i g
©° DT, (t,)
(109)

Emissions over one period and afterwards

For emissions occurring during the period (ta , tp) and afterwards, the additiona
concentration component, from (100), is simplified to:

Dr gr (t) =Dr gr (ta ! tb) F gr (t - tb) +Dr gr (tb ’t) (110)

Comparison of expressions (18) and (110) shows that the additional concentration after
the period of emissions is equal to that resulting from an impulse of emission of value
Dr,(t,,t,)/ b, a timet = t, which then decays with time according to the

normalized additional concentration response function to an impulse of emission
F. ().
ar

In the general case of emissions occurring in different time periods, inspection of
expressions (101) and (102) shows that the sSituation is similar. The additiona
concentration at the end of each period, t; , is equal to that resulting from an impulse of
emission of vaue Dr  (t, ,,t)/ b, atimet=t;, which then decays according to the
normalized additional concentration response function to an impulse of emission

F oy .

The full expressions for the additional concentration and the modified weighting factors
f'gr , from (101) and (102), become:

R

Dry(t)=Dry(ty) A fo F o (t-1t,)+Drgy(t,,t) (111)
r=1.

where;

Dr gr (ta ’ tb)

f.o=f (112)
’ ’ Dr g (tb)
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Similarly, for emissions occurring during the period (ta , tp) and afterwards, the
temperature increase component, from (106), is simplified to:

K
DTgrs(t) = (t cs /t_c) DTgrs(ta ’tb) Qs(t - tb) + b—g Dr grs(ta ’tb) Ygrs(t - tb) + DTg (tb ) t)

(113)

Comparison of expressions (24) and (33) with the first and second terms of (113),
respectively, shows that the temperature increase after the period of emissions is partly
equal to that resulting from the temperature increase at the end of the emissions period,
tp, after decaying according to the temperature increase response function to an impulse

of additional concentration, Q. (t) ; and partly equal to that resulting from an impulse of
emission of value Dr  (t,,t,)/ b, atimet=1t;,.

The full expressions for the temperature increase and the modified weighting factors |
, from (108) and (109) become:

DT, (1) =DT, (t,) A I, Q,(t- t,) +

Ky S & ..
+ b Df g(tb) a Is a. fgr Ygrs(t - tb) + (114)
g s=1 r=1

+ DT, (t, , 1)

where;
&

(t cs /t_c)a fgr DTgrs(ta ’ tb)

L =1, L (115)
DT, (t,)

7. Summary of formulas

1/C) = _L (28)
co,l co,i
$, b, cst
K g = (36)
co, | coyi

Response functions to impul ses

Additional concentration response function to an impulse of emission
\t 1 1 1
Drg(t):ngeg(t)Fg(t-t)dt (15)
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R
F,0)=8 f, e (16)
r=1

Temperature increase response function to an impulse of additional concentration
= N .
DTg(t) = (cs/r Ccoji ) S g S coz) @e.) 0, Dr (t) Q(t - t) dt (21)

S
QO =al. €. /ts)e" (22)
s=l
Temperature increase response function to an impulse of emission
t
DT, (1) =(cs/r ;) 64 /Sco,) by T C‘Leg(t') Y, (t-t)at’ (29)
g (t ar /t—g)

S
Y. =4l a f,
s=1

— o 97 (g gte) (31)
r=1 (t ar tcs)

Temperature rate of change response function to an impulse of emission

dDTg(t) o e . o

T =(CS/I‘CO2i) (Sg/S coz) bg @) Qeg(t ) Lg(t- t') dt (39
OS OR tgr t_c - t/t 't/tgr

Lg(t)=a_11|salfgrm Lt )e "=-(@Qt,)e (40)
s= r= or cs

Mean sea-level rise response function to an impulse of emission
t
Dmdl ,(t) = ML K Qe(t') W, (t-t)dt’ (50)

(t gr /t_g) ? tgr (e—t/tgr _ e-t/tm)_ tcs (e—t/tCS _ e—t/tm)g

S & . 8
W,=alsa fga hn

é
ss1 r=l m=1 (tgr_tcs) é(tgr_tm) (tcs-tm) g
(51)
Response functions to constant values
Additional concentration response function to constant emissions
Dr () =b,tC, €, F,(t) (19
_ R
Fo®)=a fy o /T, L- €"'7) (20)
r=1
Temperature increase response function to constant additional concentration
DT, (t) =(cs/r COzi) (S_g /S_coz) Dr Q(t) (25)
_ S
Qv =al. - e"=) (26)
s=1

Temperature increase response function to constant emissions
DT, (t) =(cs/r ;) 64 /Sco,) by T, €4 Y, (1) (34)
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Temperature rate of change response function to constant emissions

d DT (t
d—i():(cs/rcozi)(s_g/s_coz)bgt—g
Coef £ T
W=akafs ¢ =5

(e t/t g

e, L ()
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Mean sea-level rise response function to constant emissions

DM, (t) =MSLK

Dmsl () =MSL K, &,

A
g &
al.a fy
s=1 r=1

Globa warming potentials

Globa warming potentlal
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DT(t)— co, Q@cq(t)+ae(t)6(t t)l.IYco (t t)dt

G () =(5,/S coz) (b /bcoz) 9, (0

S
o

R
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Global warming potential commitment

DT(t) = Koo, [Beo, +8, G (1) Veo,
ét,(t) = (S_g /S_coz) (bg /bcoz) (t_g /t_COZ)g_g (t)

°S g e (t gr /t_g) -ty _t/ l;l
a_.lls a_,l fgrg'- m(t ar e = t(settcs)a
9, (1) = é (t g IT) V)
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(67)
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GWP, (t) = = (76)
5002 é. fCOZrtCOZr (1' e't/tcozr)

r=1

“policy-maker” model gwp

R

-t/
s b éfgrtgr (1-ettgr)

GWP, (t) =———° 1

S o €0 é. fCOZr t COy (1_ e't/tcozr)
r=1

Response to emissions in several periods

Additional concentration responses to emissions in severa periods

Dr gr(t) = én. Dr ar (ti—l 1ti) F ar (t - ti ) + Dr gr(tn ’t) (99)
i=0

Dr gr(t) = % Dr or (ti—l ’ti) F or (tn - t|)3F gr(t - tn) + Dr or (tn ’t) (100)
€i=0 u

Dr,(t) = Drg(tn)éR fo Folt-t,)+Drg(t,,1t) (101)

r=1
CAD, (L) F )
fo = fy =2 S (102)

Temperature increase response to emissions in several periods

DTgrS(t) = (t e /t_c) én DTgrs(ti-l’ t|) Qs(t - ti ) +
i=0

Ky &
+ a D gr (ti-l'ti ) Ygrs(t- t|) + (106)
g i=0
+ DTgrs(tn !t)
€g & K, o ,
DTQrs(t) = (t cs /t_c) ?a (t cs /t_c) DTgrs(ti-l’ti) Qs(tn - ti) + b Dr ar (ti-liti ) Ygrs(tn - ti):lles(t - tnl
g=o 9 2
Ky ég 0
+ éaDr gr(ti—l’ti)Fgr(tn-ti)L’ngrs(t_ tn)+
bg €i=0 u

+ DTgrs(tn ’t)
(107)



DT, (t) = DT, (t,) és l, Qq(t-t,) +

Kyg g . & .
+ b Dr g(tn) a IS a fgr Ygrs(t - tn) + (108)
g s=1 r=1
+ DTg (tn 1t)
& . g€ K 0
(t cs /t_c)a fgr a dt cs/t C)DTgrs(ti-l , t|) Qs(tn - tl) +—2Dr ar (ti-l'ti) Ygrs(tn - tl)l:I
l- = r=l izoé bg g
T DT, (t,)
(109)
Additional concentration response to emissions over one period and afterwards
Dr ar (t) = Dr ar (ta ! tb) F ar (t - tb) + Dr ar (tb ’t) (110)
R
Dry(t)=Dry(ty) A fo F o (t-1t,)+Drgy(t,,t) (1112)
r=1
, Dr(t, .t
fo=1f, M (112)
’ ’ Dr g(tb)

Temperature increase response to emissions over one period and afterwards

K
DT, (t) =t  /T.) DT,(t, . t,) Qu(t- t,) + b—g Dr ooty 1 t,) Yge(t- t,) + DT (8, , 1)
9

(113)
S
DT, (t) = DT, (t,) & I, Qq(t- t,) +
s=1
K, g & ..
+ b Dr g(tb) a IS a fgr Ygrs(t - tb) + (114)
g s=1 r=1
+ DT, (t, , 1)
R
te/T)a fy DTty to)
L =1, -1 (115)

DT, (t,)



8. Dimensionality of the variables

The dimensionality of the constants and functions in the note are as
follows:

[or ]=g]

[b] =1
le]=e]=lo]ls]"
les]=I]

los] = [K]
[oT]=[K]
[doT/dt]=[K][s*
[met] = om]
[MsL] = [em] [ ]
[or ] =[or]={g]
[or o] =[o]ld
t]=[t]=1s]
[k]=[K]{s]le]*
Fl=FFl=l=Rl=[L]=[v]=[" =1
[v]=[wl=[c]=[d"*

[d=lo] =1
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9. Example of application to data

The model adopted for the temperature response to a doubling of carbon dioxide
concentration is (Voss,R. et a., in prep, Heinmann, M., personal communication):

DT =3.06K | 1- .634 ¢ /% - 366/
for aninitial concentration of carbon dioxide:
[ co, =354.17 ppmv

The pulse response of the additional concentration of carbon dioxide is taken from the
“Bern” model Joos et al., 1996). Representative values are, for pulses of emission
occurring at the time to:

t0=1770

Dr o, (t) =.413 - 6036 /323 4 501e 1% 4 3007/ | 4 70572 4+
4.988€ V185 702et/5%Y 12,377 V2% _ 2,083¢ V21 + 5340712V

to = 1900

Dr o, (t) =.237 +.653e " **¥ - 1.963e """ +1.605¢ '**" +.807 &™'*¥ -
.713e-t/18.6 +.444€-t/526y_ .739e-t/2.86y +.792e-t/218y _ 127 e-t/l.27y

The single exponential decay time constants for all other greenhouse gases are taken
from the IPCC Second Assessment Report.

Thevauesof (S, /S, ) are taken from the 1995 IPCC Second Assessment report, in
unitsof Wm? per ppmv, with the assumption that:

s, /s_co2 =s g/s co,

that is, the values, relative to carbon dioxide, of the constants sigma are the same for
column and mean values.

The equivalence between the units of mass and volume fraction is taken to be .4636
ppmv/GtC for carbon dioxide; for other gases, this value is adjusted by the appropriate
molecular mass.

The physical units of the variables are as follows:

- timeinyears(y);



emissionsin gigaton or petagram of carbon per year (GtCly or PgCly) for carbon
dioxide; in teragram of nitrogen (TgN/y) for nitrous oxide; and in teragram of the
gas (Tgyly) for all other greenhouse gases,

pulse of emission in GtC for carbon dioxide; in TgN for nitrous oxide; and in Tgg
for al other greenhouse gases

atmospheric concentration in parts per million in volume for carbon dioxide; and in
parts per billion in volume for all other greenhouse gases,

pulse of atmospheric concentration in ppmv.y for carbon dioxide; and in ppbv.y for
all other greenhouse gases,

temperature in degree Celsius (°C);
temperature rate of change in degree Celsius per year (°Cly);

mean sea level-rise in centimeter (cm).

The values of the constants in the formulas that define the response
function, as well as the unit conversion constants appear in Table |, for 24
greenhouse gases included in the IPCC Second Assessment Report.
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