Transformation pathways and limiting warming to specific levels, notably a global mean warming of 2°C or 1.5°C relative to pre-industrial levels CLIMATE CHANGE 2014 Mitigation of Climate Change

Detlef van Vuuren, PBL, The Netherlands

Working Group III contribution to the IPCC Fifth Assessment Report

Volker Krey, IIASA, Austria

Working Group III assessment of transformation pathways

- Collected ~1200 scenarios from existing literature in "AR5 scenario database" to assess costs and mitigation implications.
- Both scenarios without new climate policy (baseline) and stringent mitigation scenarios
- For statements on climate benefits, connection with Representative Concentration Pathways (RCPs) as run by WG1 needed

Working Group III contribution to the IPCC Fifth Assessment Report

WG3 categorised scenarios based on their CO₂-eq concentration in order to link them with RCPs

Working Group III contribution to the **IPCC Fifth Assessment Report**

Wide range of scenarios in the literature – stringent emission reduction required to reach 2°C target

GHG Emission Pathways 2000-2100: All AR5 Scenarios

Lowest scenarios "*likely*" to stay below 2°C

Working Group III contribution to the **IPCC Fifth Assessment Report**

Achieving low levels of temperature change requires to limit cumulative CO₂ emissions

Working Group III contribution to the IPCC Fifth Assessment Report

Major advancement since AR4: Probabilistic interpretation of the scenario literature

Relationship between global GHG emissions and the likelihood of different temperature targets

Different trajectories possible to the same target – delay scenarios rely heavily on negative emissions (BECCS)

In cost-effective 2°C mitigation strategies, emissions are reduced to about current levels or less by 2030

GHG Emissions Pathways to 2030

Working Group III contribution to the

GHG Emissions Pathways to 2030

Sweden & France after the oil crisis

Working Group III contribution to the

UNEF

GHG Emissions Pathways to 2030

Collapse of the former Soviet Union

Europe WWI & II (>4%)

Working Group III contribution to the

UNEF

GHG Emissions Pathways to 2030

Working Group III contribution to the

Source: Figure SPM.5

UNEF

GHG Emissions Pathways to 2030

Working Group III contribution to the

Source: Figure SPM.5

UNEF

Mitigation costs vary widely, however, they are relatively modest compared to the overall economic growth

	Consumption losses in cost-effective implementation scenarios						
	[% reduction in cons	[percentage point reduction in annualized consumption growth rate]					
2100 Concentration (ppm CO ₂ eq)	2030	2050	2100	2010-2100			
450 (430–480)	1.7 (1.0–3.7)	3.4 (2.1–6.2)	4.8 (2.9–11.4)	0.06 (0.04–0.14)			
500 (480–530)	1.7 (0.6–2.1)	2.7 (1.5–4.2)	4.7 (2.4–10.6)	0.06 (0.03–0.13)			
550 (530–580)	0.6 (0.2–1.3)	1.7 (1.2–3.3)	3.8 (1.2–7.3)	0.04 (0.01–0.09)			
580–650	0.3 (0–0.9)	1.3 (0.5–2.0)	2.3 (1.2–4.4)	0.03 (0.01–0.05)			

- By comparison overall consumption grows by 300-900% in the baselines
- Costs exclude benefits of mitigation (reduced impacts as well as other cobenefits (e.g., improvements for local air quality).

Source: Table SPM.2

Mitigation costs increase due to delayed mitigation and limited availability of technologies

Source: Figure TS.13

WMO UNEP

Sectoral emissions in baseline scenarios

Source: Figure SPM.7, TS.15

WMO

UNEP

Sectoral emissions in 450 ppm CO₂eq scenarios (with and without CCS or negative emissions)

450 ppm CO₂eq with CCS 50 Direct Emissions [GtCO2eq/yr] CO, Transport Max CO, Buildings 75% 40 CO, Industry Median CO₂ Electricity 25% CO, Net AFOLU 30 Min Non-CO₂ (All Sectors) Individual Actual 2010 Level _ Scenarios 20 050 8 10 0 . -10 . -20 Transport Buildings Industry Electricity Net Non-CO₂ 29 22 222 36 36 3333 38 38 52 n= Wor____

450 ppm CO,eq without CCS

Source: Figure SPM.7

INTERGOVERNMENTAL PANEL ON Climate change

CLIMATE CHANGE 2014 Mitigation of Climate Change

www.mitigation2014.org

Detlef van Vuuren , PBL, The Netherlands

Working Group III contribution to the IPCC Fifth Assessment Report

Volker Krey, IIASA, Austria

Additional slides

Working Group III contribution to the IPCC Fifth Assessment Report

Without more mitigation, global mean surface temperature might increase by 3.7° to 4.8°C over the 21st century.

Working Group III contribution to the IPCC Fifth Assessment Report

Drivers of emissions growth (baseline scenarios)

Emission reduction requires decarbonisation of energy system and more energy efficiency.

W IPcc ғили Assessment керогі

Reduction in Carbon Intensity Relative to 2010 [%]

Emissions reductions needed for all gases

Working Group III contribution to the IPCC Fifth Assessment Report

Mitigation requires major technological and institutional changes including the upscaling of low- and zero carbon energy

"As likely as not" 2C

"Likely" 2C

Working Group III contribution to the IPCC Fifth Assessment Report

Mitigation costs increase with limited availability of technologies (and delayed mitigation)

	Consumption	Consumption losses in cost-effective implementation scenarios				Increase in total discounted mitigation costs in scenarios with limited availability of technologies			
	[% reduction in consumption relative to baseline]			[percentage point reduction in annualized consumption growth rate]	[% increase (2015–2100) relative to default technology assumptions]				
2100 Concentration (ppm CO ₂ eq)	2030	2050	2100	2010-2100	No CCS	Nuclear phase out	Limited Solar / Wind	Limited Bio-energy	
450 (430–480)	1.7 (1.0–3.7)	3.4 (2.1–6.2)	4.8 (2.9–11.4)	0.06 (0.04–0.14)	138 (29–297)	7 (4–18)	6 (2–29)	64 (44–78)	
500 (480–530)	1.7 (0.6–2.1)	2.7 (1.5–4.2)	4.7 (2.4–10.6)	0.06 (0.03–0.13)					
550 (530–580)	0.6 (0.2–1.3)	1.7 (1.2–3.3)	3.8 (1.2–7.3)	0.04 (0.01–0.09)	39 (18–78)	13 (2–23)	8 (5–15)	18 (4–66)	
580–650	0.3 (0–0.9)	1.3 (0.5–2.0)	2.3 (1.2–4.4)	0.03 (0.01–0.05)					

Allocation of Electricity/Heat Generation Emissions to End-use Sectors for 2010

Source: Figure A.II.2

Direct vs. indirect sectoral emissions in baseline scenarios

Source: Figure SPM.7, TS.15

Substantial reductions in emissions would require large changes in investment patterns

Source: Figure SPM.9

WMO UNEP