Climate Change 2013: The Physical Science Basis Working Group I contribution to the IPCC Fifth Assessment Report

IPCC AR5 WGI: Polar Regions Polar Amplification, Permafrost, Sea ice changes

Paul J Hezel Contributing Author: Ch 12, Tech Summary, SPM

Folgefonna glacier on the high plateaus of SØrfjorden, Norway (60°14
N, 6°44 E) OWAW ATTRASBUSE AND AND A PRIMA

Summary for Policymakers (SPM):

Over the last two decades, the Greenland and Antarctic ice sheets have been losing mass, glaciers have continued to shrink almost worldwide, and **Arctic sea ice** and Northern Hemisphere spring snow cover have **continued to decrease** in extent (*high confidence*).

It is *very likely* that the **Arctic sea ice cover** will **continue to shrink and thin** and that Northern Hemisphere spring snow cover will decrease during the 21st century as global mean surface temperature rises. Global glacier volume will further decrease.

IPCC AR5 WGI Polar Amplification

Fig. 12.41; Box 5.1, Fig. 1 Polar amplification

Polar Amplification – zonal mean surface temperature warming at high latitudes exceeds global average temperature change.

Polar amplification

Polar Amplification – zonal mean surface temperature warming at high latitudes exceeds global average temperature change.

New temperature reconstructions and simulations of past climates show with *high confidence* **polar amplification** in response to changes in atmospheric CO₂ concentration.

In the absence of a strong reduction in the Atlantic Meridional Overturning, the **Arctic region** is projected to **warm most** (*very high confidence*)

Impact on ice sheet stability and global sea level, carbon cycle feedbacks e.g. permafrost melting

IPCC AR5 WGI Permafrost

Permafrost and frozen ground

There is *high confidence* that **permafrost temperatures have increased** in most regions since the early 1980s.

- Strong warming of permafrost
 - 3°C in parts of Northern Alaska
- 2°C in parts of the Russian European North
 - Reduction in permafrost thickness and areal extent.
 - S. boundary moves northward continuous permafrost – 50 km discontinuous permafrost – 80 km

Active layer thickness – generally increasing

Figure 12.33

Near surface permafrost area (frozen ground up to 3.5 m depth)

It is *virtually certain* that **near-surface permafrost** extent at high northern latitudes **will be reduced** as global mean surface temperature increases.

Important because carbon and methane reservoirs are very large

- moderate feedback on decades to centuries
- important on millenial time scales because of size of reservoirs

IPCC AR5 WGI Arctic sea ice

Arctic sea ice

The annual mean **Arctic sea ice extent decreased** over the period 1979 to 2012 with a rate that was *very likely* in the range 3.5 to 4.1% per decade (range of 0.45 to 0.51 million km² per decade), and *very likely* in the range 9.4 to 13.6% per decade (range of 0.73 to 1.07 million km² per decade) for the summer sea ice minimum (perennial sea ice).

There is *medium confidence* from reconstructions that over the past three decades, **Arctic summer sea ice retrea**t was **unprecedented** and sea surface temperatures were anomalously high in at least the last **1,450 years**.

Figure 4.3 All Figures © IPCC 2013 Annual and seasonal Arctic sea ice extent, 1979-2012

Figure 9.24a Modeled Arctic sea ice extent, 1900-1912

INTERGOVERNMENTAL PANEL ON Climate change

All Figures © IPCC 2013

Figure 9.24c Distribution of observed Arctic sea ice extent trends

IPCC AR5 Working Group I Climate Change 2013: The Physical Science Basis

WMO

Figure 12.28ab Projected Arctic sea ice extent changes

Figure 12.29a,c Maps of multimodel mean Arctic sea ice concentration

Figure SPM.7b Northern Hemisphere September sea ice extent

A **nearly ice-free Arctic Ocean** in **September** is likely before mid-century under RCP8.5 (*medium confidence*)

All Figures © IPCC 2013

It is *very likely* that the **Arctic sea ice cover will continue to shrink and thin** and that Northern Hemisphere spring snow cover will decrease during the 21st century as global mean surface temperature rises.

Climate Change 2013: The Physical Science Basis Working Group I contribution to the IPCC Fifth Assessment Report

Full Report and Background Information

www.climatechange2013.org

Folgefonna glacier on the high plateaus of SØrfjorden, Norway (60°14 □ N, 6°44 □ E) OWAW ATTRASBUSE AND AND A PRIMA

