The message from science: The emissions gap and how to bridge it

Joseph Alcamo Chief Scientist, UNEP

Presented at Informal Ministerial Briefing Bonn, Germany 4 May, 2012

Disclaimer: This presentation may only be used for educational and not for commercial purposes

Moving forward on global climate policy

Copenhagen December, 2009

Durban December, 2011

Two developments ...

✓ A target ...

Staying below an increase of 2 degrees Celsius (1.5°C)

✓ A means to get there ...

Country pledges to control emissions (pegged to 2020)

Two questions ...

✓ Is there a gap between ...

What we are aiming for ... and where we are heading?

√ How can the gap be bridged?

The Emissions Gap

2010 Cancun Climate Summit UNEP "Emissions Gap" report

United Nations Environment Programme with the European Climate Foundation & National Institute of Ecology, Mexico

2011 Durban Climate Summit UNEP "Bridging the Emissions Gap" report

United Nations Environment Programme with the European Climate Foundation & Ministry of Environment, South Africa

55 scientists, 28 institutions, 15 countries

What are we aiming for? Complying with the 2°C target

1. Meeting a temperature target depends largely on *cumulative* emissions

2. Different pathways of emissions correspond to same cumulative emissions

What are we aiming for? Complying with the 2°C target

What are we aiming for? Complying with the 2°C target

Global Greenhouse Gas Emissions

Gt/year CO₂- equiv.

Where are we headed? How big is gap in 2020?

Where are we headed? How big is gap in 2020?

Under business-as-usual

Gap = 12 Gt/year CO₂₋equiv

Under different cases of country pledges:

Gap = 6 - 11 Gt/year

Under most ambitious case Gap = 6 Gt/year:

Half way to 2° target; but not far enough ...

What happens if the gap is not closed?

Best guess temperature increase:

 \approx + 2.5 to + 5.0°C (up to 2100 relative to pre-industrial)

Two ways of looking at the question 1st: Integrated Assessment Models What scenarios meet the 2°C target and close the gap?

1. Improve energy efficiency decrease energy/GDP by $\approx 1-2$ % per year (between 2005 & 2020)

2. Change to lower-emission energy mix (percentage of total primary energy in 2020)

■ Non-fossil fuels up to 28% (now 18.5%)

■ Biomass = up to 17% (now 10.5%)

■ Other renewables = up to 9% (now 2.5%)

3. Reduce non-CO₂ emissions: up to - 19% (Co-benefits) (relative to 2020 business-as-usual)

Each group/scenario had a different combination.

Average marginal cost ≈ up to 38 USD/ton equiv CO₂ reduced

No breakthroughs needed to bridge the gap.

Two ways of looking at the problem: 2nd: Bottom-up sectoral studies *What is the emission reduction potential in each sector?*

Two ways of looking at the problem: 2nd: Bottom-up sectoral studies *What is the emission reduction potential in each sector?*

† †

Power

1

Industry

4

Transport

*

Aviation & Shipping

, 14 - (15 A)

Buildings

- Energy conservation
- Renewable energy
- Fuel switching
- Design & planning (building, land use, transportation)

Two ways of looking at the problem: 2nd: Bottom-up sectoral studies *What is the emission reduction potential in each sector?*

- Forestry
- Agriculture
- Waste

- Sustainable forest management
- Sustainable agriculture (nutrient & soil management)
- Land use planning; avoided deforestation
- Biogas recovery

Two ways of looking at the problem: 2nd: Bottom-up sectoral studies

Emission reduction potential in 2020 (Gt/year equivalent CO₂)

	(Guyear equivalent CO ₂)	
Ŧ Ŧ	Power	2.2 – 3.9
	Industry	1.5 - 4.6
4	Transport	1.4 - 2.0
*	Aviation & Shipping	0.3 - 0.5
***	Buildings	1.4 – 2.9
	Waste	≈ 0.8
444	Forestry	1.3 - 4.2
	Agriculture	1.1 – 4.3

Total Emission = 17 ± 3 Gt/year CO₂e **Reduction Potential**

The Gap in 2020 = 12 Gt/year CO_2e (relative to business-as-usual)

Potential in sectors big enough to bridge the gap.

And the potential is already being realized ... Major actions to reduce greenhouse gas emissions

Vehicle emission standards – China, EU, Japan, S.Korea, US, ...

Reduction of vehicle CO₂ emissions from Germany: - 10% / year (1978 - 2005)

Bus Rapid Transit (BRT) – Colombia, China, Mexico, South Korea. Reduction of CO₂
equivalent emissions from Colombia: 1 Mt/yr
relative to baseline

And the potential is already being realized ... Major actions to reduce greenhouse gas emissions

Energy appliance label, India

Energy appliance label, US EPA

Energy labeling of appliances - India, China, Mexico, EU, US, ... total of 78 countries

Avoided CO₂ emissions in Mexico due to energy savings related to standards on 4 appliance types (cumulative 1995-2005): 41 Mt

Avoided CO₂ emissions in China due to energy savings related to appliance standards (cumulative 2000-2005): 50 Mt

The urgency of acting ...

Losing opportunities ...

"Lock in" of high emission technologies, structures and processes

- Currently produced energy-inefficient vehicles will still be on the road in 2020
- Energy-wasteful buildings now under construction will last 100 years
- Becoming dependent on new cropland requiring high energy and fertilizer inputs
- Power plants are being constructed with fuel efficiency below what is technically feasible, and will have lifetime of >25 years

Conclusions

To meet the two degree target

- Global emissions peak before 2020
- Global emissions in $2050 \approx 1/3-1/2$ below 1990
- Global emissions in 2020 ≈ 44 Gt/yr (41-46)

But the Emissions Gap in 2020 (between emissions consistent with 2°C target and emissions expected due to pledges) is big \rightarrow 6 -11 Gt CO₂e (= 12 under business-as-usual)

- Pledges not enough, countries have to work harder to stay within 2°C
- Much has to be done by 2020 to comply with the temperature target

Conclusions

The Gap can be narrowed ... with action in the negotiations

- Minimizing use of surplus emission credits & LULUCF credits
- Avoiding double-counting of offsets
- Pursuing more ambitious ("conditional") pledges

The Gap can be bridged ... by realizing large potential in each sector

- Intervening in energy system → improvements in energy efficiency & accelerating the introduction of renewable energy;
- More sustainable management of wastes, agriculture and forests;
- Reducing CO₂ and non-CO₂ emissions;
- By implementing measures that are technically feasible and economic

But time is a factor ...

The message from science: The emissions gap and how to bridge it

Joseph Alcamo Chief Scientist, UNEP

Presented at Informal Ministerial Briefing Bonn, Germany 4 May, 2012

Disclaimer: This presentation may only be used for educational and not for commercial purposes

