Convention-cadre des Nations-Unies sur les Changements climatiques

Documents de formation du GCE Inventaires nationaux des gaz à effet de serre

Analyse des catégories clés

Version 2, avril 2012

Public visé et objectif des documents de formation

- Ces documents de formation ont été conçus pour les personnes dont les connaissances en matière d'élaboration d'inventaire national des gaz à effet de serre (GES) sont de niveau <u>débutant</u> ou <u>intermédiaire</u>.
- Suite à la lecture de cette présentation et à l'aide de la documentation connexe, le lecteur devrait :
 - avoir une vue globale du déroulement des analyses des catégories clés ;
 - avoir une compréhension générale des méthodes disponibles, ainsi que des principaux défis dans ce domaine précis;
 - être en mesure de déterminer les méthodes à adopter pour s'adapter au mieux à la situation de son pays;
 - savoir où se procurer plus d'informations à ce sujet.
- Ces documents de formation ont été créés principalement d'après les méthodes élaborées par le GIEC. Le lecteur est donc encouragé à se référer à ces documents d'origine pour obtenir des informations plus approfondies sur une question précise.

Acronymes et abréviations

DA Données d'activité

☐ GES Gaz à effet de serre

☐ **GBP** Guide des bonnes pratiques

PRP Potentiel de réchauffement planétaire

■ ACC Analyse des catégories clés

□ UTCATF Utilisation des terres, changement d'affectation des terres et foresterie

■ AG/CG Assurance/Contrôle Qualité

Définition

- □ Une catégorie clé est une catégorie jugée prioritaire au sein du système d'inventaire national, car ce système estime que son incidence est considérable sur l'inventaire des GES d'un pays dans son intégralité pour ce qui est :
 - du niveau absolu ;
 - de la tendance ;
 - ❖ du taux d'incertitude en matière d'émission et d'absorption.
- □ Par ailleurs, le contexte national peut indiquer des catégories clés supplémentaires (pertinentes même si elles ne remplissent pas toutes les conditions expliquées ci-dessus) suite à une analyse qualitative.

Raisons

- Les bonnes pratiques consistent à :
 - identifier les catégories clés nationales de manière systématique et objective (c.-à-d., procéder à une analyse des catégories clés);
 - utiliser les résultats de cette analyse comme fondement pour choisir les méthodes et attribuer les ressources.

Hausse de la qualité de l'inventaire et de la confiance dans les estimations développées

Analyse des catégories clés

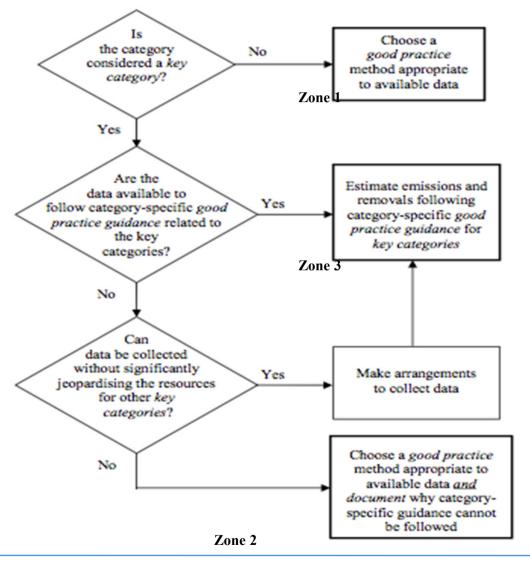
- ☐ Il est recommandé aux Parties autres que celles visées à l'Annexe I de suivre ces bonnes pratiques uniquement si elles :
 - disposent des DA requises pour appliquer le plus haut niveau de méthodologie et
 - sont en mesure de collecter des données pertinentes sans mettre en péril les ressources financières nécessaires pour l'ensemble du processus d'inventaire.
- ☐ Si tel n'est pas le cas, le niveau de précision doit être réduit tant que le juste équilibre entre les données disponibles n'est pas atteint :
 - Niveau 3 > Niveau 2 > Niveau 1
- N'oubliez pas que l'ACC est un outil qui aide à classer par ordre de priorité des ressources limitées en :
 - se concentrant sur les sources/puits les plus important(e)s d'émission du pays ;
 - identifiant l'approche méthodologique la mieux adaptée (il est conseillé de choisir des méthodes plus détaillées et de niveau supérieur pour les catégories clés).

Directives générales

- Les lignes directrices actuelles concernant les communications nationales (CN) des Parties autres que celles visées à l'Annexe I encouragent l'utilisation du GBP-2000 et le GBP-UTCATF pour procéder aux ACC.
- Les compilateurs d'inventaire des GES sont invités à effectuer l'ACC en deux temps :
 - Dans un premier temps, toutes les catégories (sources) clés à l'exception d'UTCATF doivent être identifiées (c.-à-d., les catégories clés doivent être identifiées pour les secteurs Énergie, Processus industriels, Utilisation de solvants et autres produits, Agriculture et Déchets) d'après les directives du chapitre 7 du GBP-2000 (« Choix de méthode et recalculs »).
 - Dans un second temps, l'analyse des catégories clés doit être réitérée pour l'inventaire complet, catégories UTCATF comprises.

Attention!

- Une fois les catégories UTCATF incluses à l'analyse, il est possible que des catégories autres qu'UTCATF identifiées comme clés lors de la première analyse n'apparaissent plus comme telles :
 - Ces catégories doivent tout de même continuer à être traitées comme clés.
- Dans certains cas, dans les pays où les émissions ou absorptions nettes causées par l'UTCATF sont faibles, l'analyse intégrée peut identifier des catégories autres qu'UTCATF supplémentaires comme clés :
 - L'analyse effectuée pour les secteurs autres qu'UTCATF doit servir à identifier les catégories clés dans ces secteurs, et les catégories autres qu'UTCATF supplémentaires identifiées dans l'analyse combinée ne doivent pas être considérées comme clés.



Identification des catégories clés

- Tout bureau d'inventaire ayant déjà établi un inventaire national des GES est en mesure d'identifier les catégories clés relativement à leur contribution au niveau absolu des émissions nationales.
- □ Pour les bureaux d'inventaire ayant déjà préparé une série temporelle, la détermination quantitative des catégories clés doit inclure une évaluation du niveau absolu et de la tendance des émissions et absorptions.
- Certaines catégories clés ne peuvent être identifiées que lorsque leur incidence sur la tendance de l'inventaire national est prise en considération.

Arbre décisionnel permettant de choisir une méthode conforme aux bonnes pratiques

Qualité des estimations :

Zone 3 > Zone 2 > Zone 1

Une ACC est réalisée pour l'ensemble de l'inventaire.

Identification des catégories clés

- □ Bonnes pratiques pour déterminer le niveau adéquat de décomposition des catégories :
 - Utilisez la décomposition des sous-catégories suggérée par le GIEC (voir les directives pour les secteurs).
 - Prenez en compte séparément chaque GES pour chaque catégorie (choix par défaut sauf en cas de solution mieux adaptée).
 - Si des données sont disponibles, lancez une analyse distincte des émissions et absorptions.

Le tableau 5.4.1 du GBP-UTCATF fournit des informations sur le niveau recommandé d'agrégation pour tous les secteurs.

Identification des catégories clés (suite)

TABLE 5.4.1 SUGGESTED IPCC SOURCE/SINK CATEGORIES FOR LULUCF AND NON-LULUCF*			
Source/Sink Categories to be Assessed in Key Category Analysis	Special Considerations		
LULUCF			
Forest land remaining forest land			
Croplands remaining croplands	Assess key categories separately for CO ₂ , CH ₄ and N ₂ O. If the category is key, assess the significance of subcategorie by identifying those that contribute 25-30% to the total		
Grassland remaining grassland			
Wetland remaining wetland	level of emissions or removals from the category. For information on the subcategories associated with each		
Settlements remaining settlements	category, see Table 3.1.1 and 3.1.3 in Chapter 3.		
Conversion to forest land			
Conversion to cropland			
Conversion to grassland	In addition to the guidance above, assess the impact of all deforestation occurring within the country according to the qualitative guidance provided in the sixth bullet Section 5.4.3.		
Conversion to wetland b			
Conversion to settlements			
Conversion to other land			
ENERGY			
CO ₂ Emissions from Stationary Combustion	Disaggregate to the level where emission factors are distinguished. In most inventories, this will be the main fuel types. If emission factors are determined independently for some subsource categories, these should be distinguished in the analysis.		
Non-CO ₂ Emissions from Stationary Combustion	Assess CH4 and N2O separately.		
Mobile Combustion: Road Vehicles	Assess CO ₂ , CH ₄ and N ₂ O separately.		

Groupe Consultatif d'Experts (GCE)

Détermination des sous-catégories importantes

- Pour chaque catégorie clé, déterminez si certaines sous-catégories ont une importance particulière :
 - Une sous-catégorie est jugée importante lorsqu'elle contribue grandement aux émissions de la catégorie clé à laquelle elle correspond.
 - Si des informations sur les sous-catégories sont disponibles, celles qui sont potentiellement importantes peuvent être incluses dans l'analyse des catégories clés au même titre que les catégories.
- Une bonne pratique consiste à évaluer les émissions causées par les sous-catégories importantes en appliquant une approche méthodologique aussi détaillée et spécifique que le permettent les données d'activité disponibles.
- Les sous-catégories de moindre importance peuvent être traitées à l'aide des méthodes de Niveau 1.

Approches

- Approches quantitatives permettant de déterminer les catégories clés :
 - Approche basique de Niveau 1 (niveau et tendance)
 - ❖ Approche de Niveau 2 (niveau et tendance), qui tient compte des incertitudes
- □ En plus de procéder à la détermination quantitative des catégories clés, il est judicieux de prendre en considération les critères qualitatifs, particulièrement lorsqu'une évaluation de Niveau 1 est effectuée ou que des méthodes d'estimation de niveau inférieur sont utilisées.
- Les recommandations fournies dans les deux GBP sont applicables à l'ensemble de l'inventaire des émissions et absorptions.

Par où commencer?

- S'il s'agit d'un premier inventaire, préparez un inventaire préliminaire pour l'année qui vous intéresse en appliquant des méthodes de Niveau 1 pour toutes les catégories.
- ☐ Si vous disposez déjà d'un inventaire des GES, utilisez les données les plus récentes sur les GES.
- Répertoriez séparément les catégories de sources et puits.
- Exprimez les émissions en équivalent-dioxyde de carbone (équivalent CO₂) à l'aide des valeurs du PRP du GIEC.

Approche quantitative - Niveau 1 : évaluation du niveau

D'après l'évaluation de l'influence des diverses catégories de sources et puits sur le niveau de l'inventaire national des GES :

EQUATION 5.4.1 LEVEL ASSESSMENT (TIER 1)

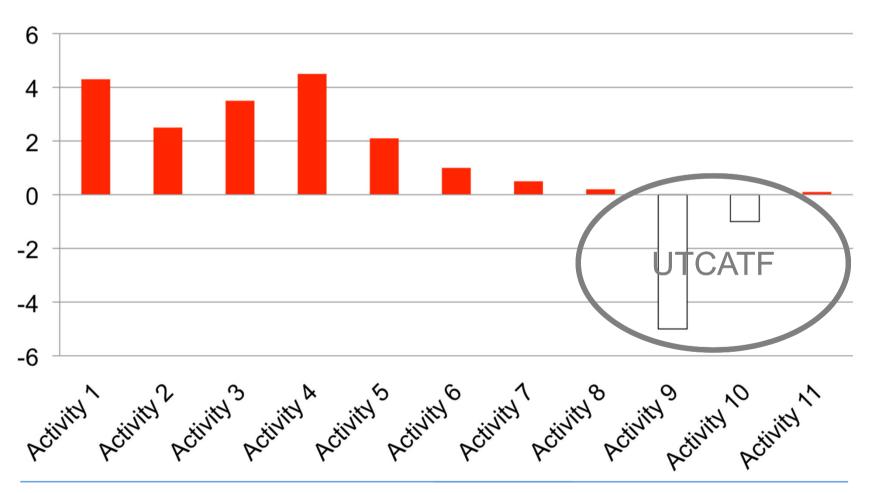
Key Category Level Assessment = | Source or Sink Category Estimate | \int Total Contribution $L_{x,t} = E_{x,t} / E_t$

Where:

L_{x,t} = level assessment for source or sink x in year t. The asterisk (*) indicates that contributions from all categories (including LULUCF categories) are entered as absolute values.

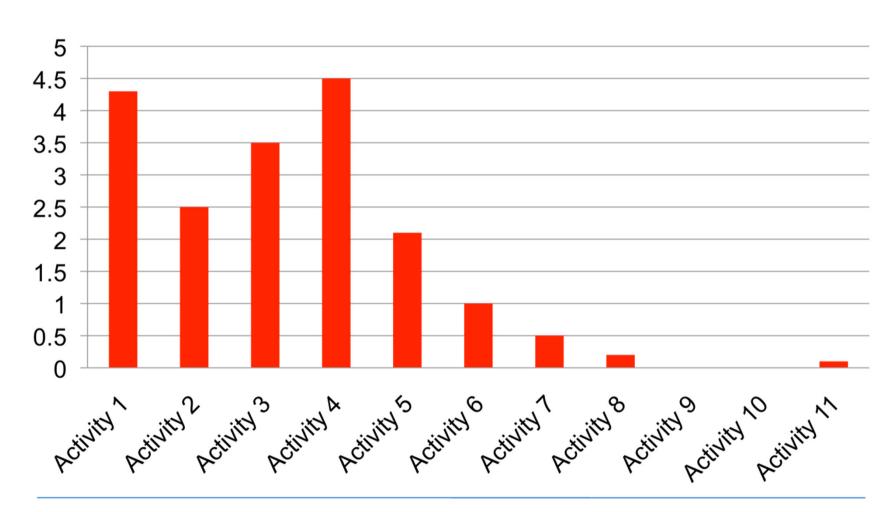
 $E_{x,t} = |E_{x,t}|$: absolute value of emission or removal estimate of source or sink category x in year t

 E_t = \sum_{x} | $E_{x,t}$ |: total contribution, which is the sum of the absolute values of emissions and removals

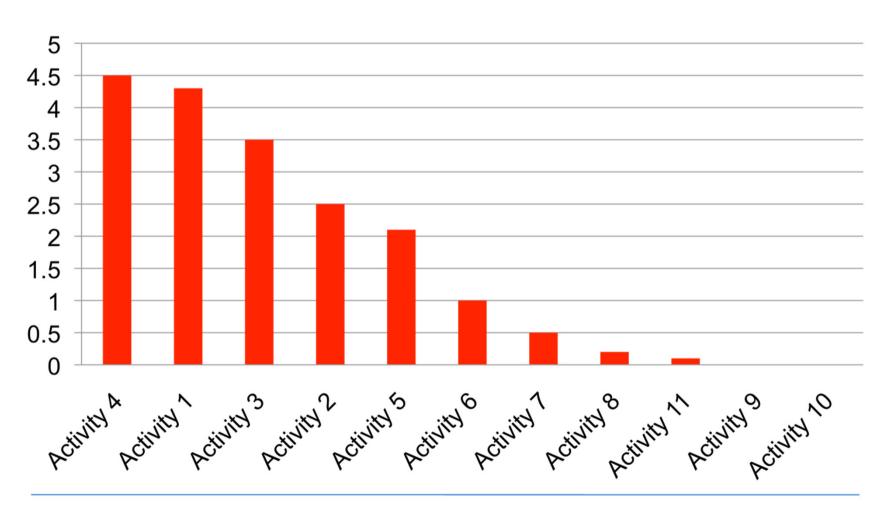

in year t. The asterisk (*) indicates that contributions from all categories (including LULUCF categories) enter as absolute values.

Because both emissions and removals are entered with positive sign?, the Total Contribution may be larger than a country's total emissions less removals.

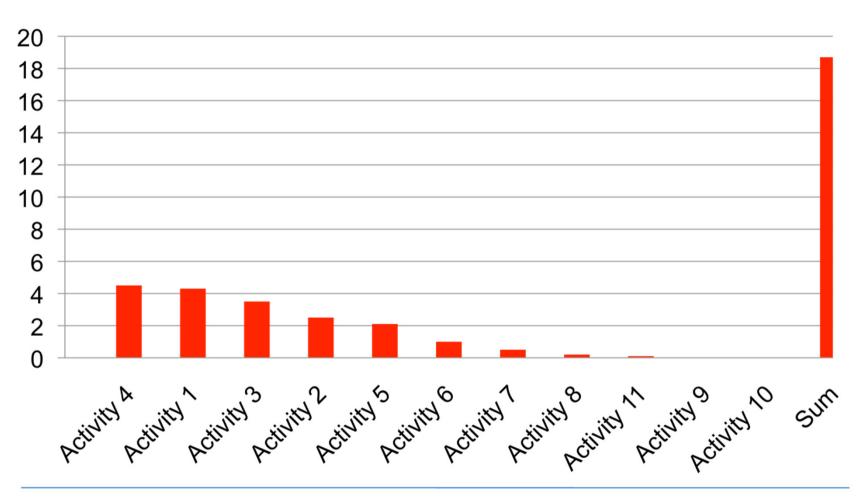
Les catégories clés sont celles qui, lorsqu'additionnées par ordre décroissant de magnitude, équivalent à 95 % de la somme de tous les Tx_{C} .



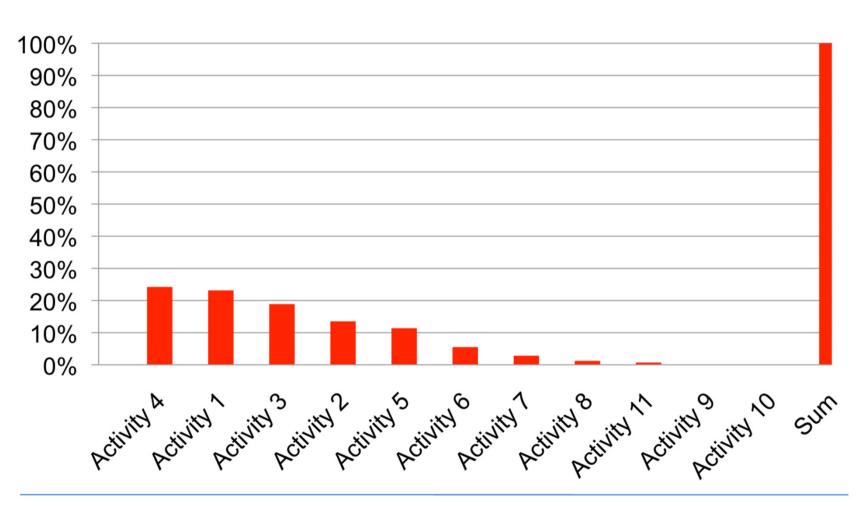
Estimation des émissions et absorptions de GES



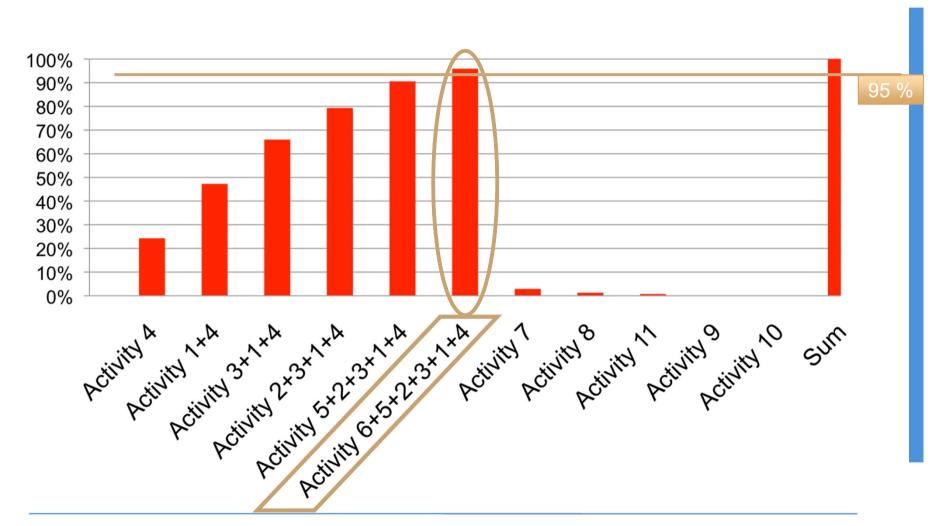
Étape 1 : seules les émissions sont prises en considération



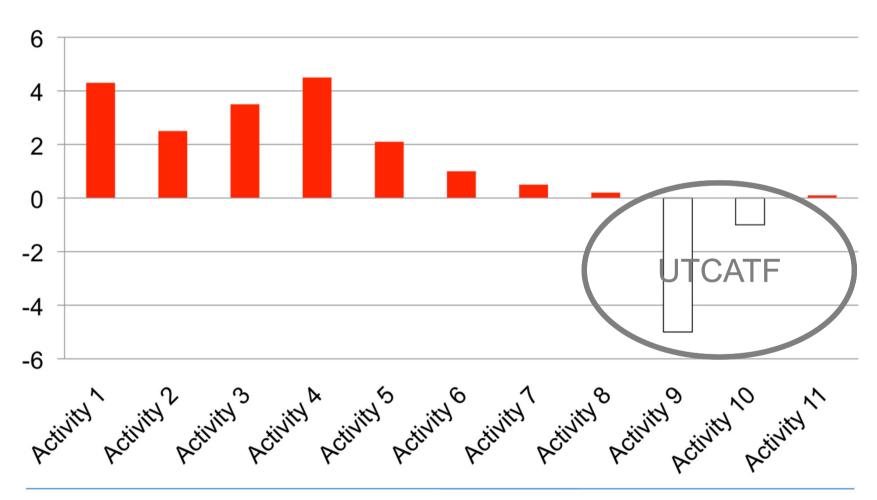
Étape 2 : classement des activités par ordre décroissant



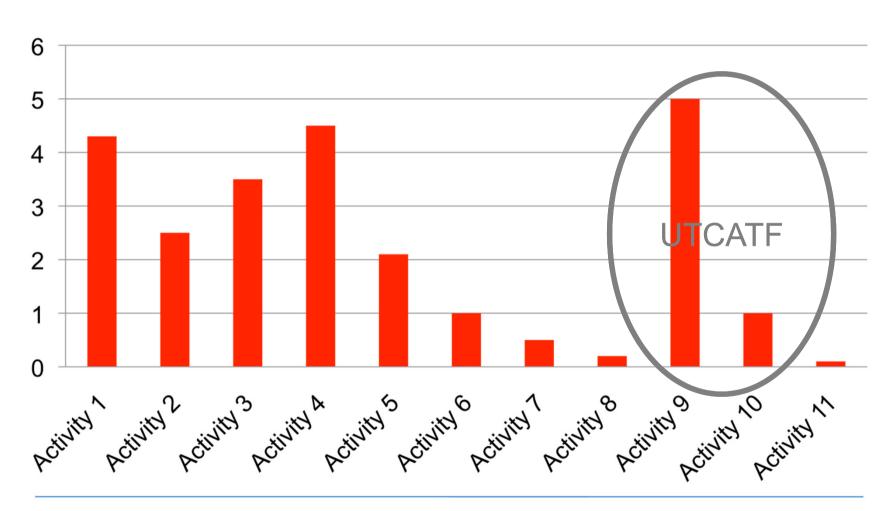
Étape 3 : somme de toutes les émissions

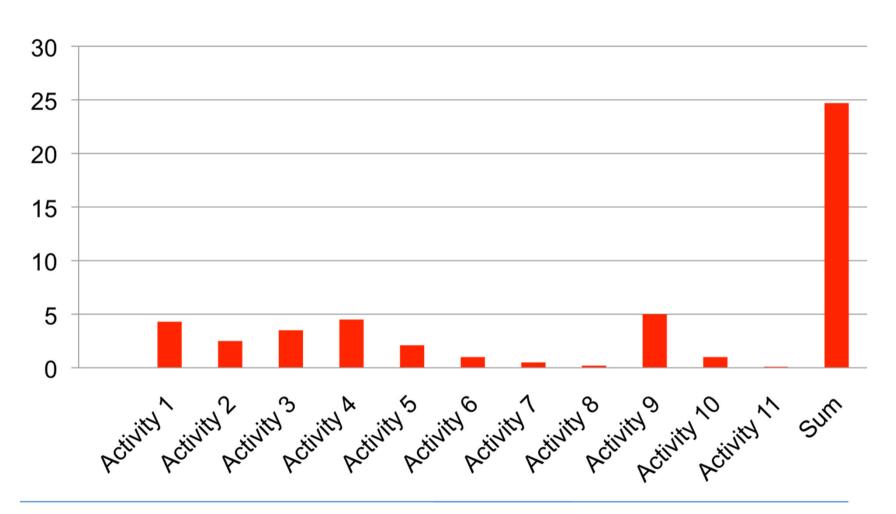


Étape 4 : calcul des taux de contribution

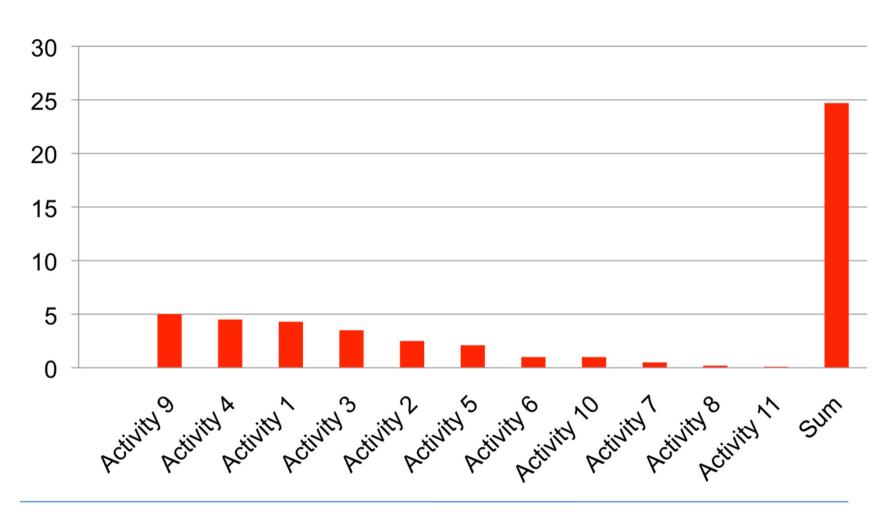


Étape 5 : calcul de l'équivalent à 95 % des émissions totales

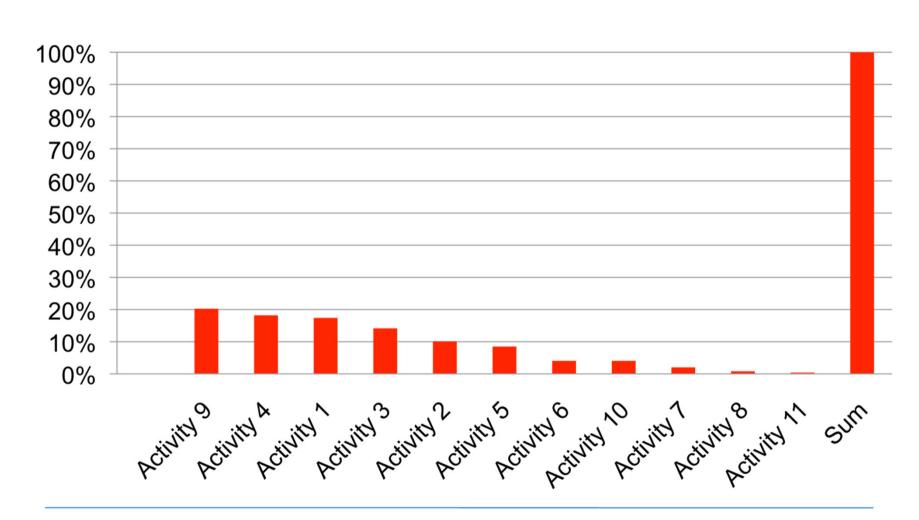




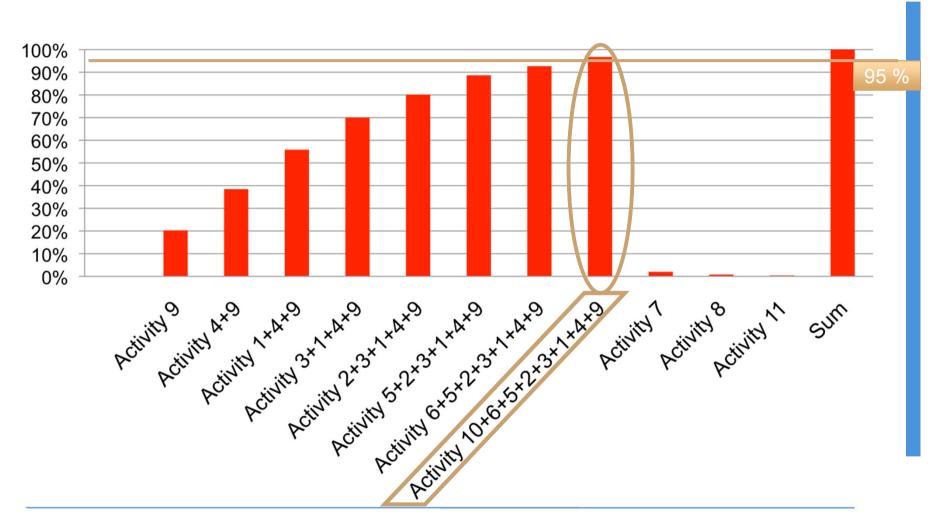
Étape 6 : conversion des absorptions en « émissions »



Étape 7 : somme de toutes les « émissions »



Étape 8 : classement de toutes les activités par ordre décroissant



Étape 9 : calcul du taux de contribution de toutes les activités

Étape 10 : calcul de l'équivalent à 95 % des « émissions totales »

Catégories clés

☐ ACC (émissions uniquement)

Activité 9

Activité 4 Activité 1

Activité 4

■ ACC (émissions et absorptions)

Activité 3

Activité 1

Activité 2

Activité 3

Activité 5

Activité 2

Activité 6

Activité 5

Activité 6

Activité 10

Exemple issu du GBP-UTCATF

TABLE 5.4.7 EXAMPLE OF A LEVEL ASSESSMENT ^a								
A	В			С	D'	E'	D	E
IPCC Source categories (IPCC 1996)	Direct Green- house Gases	Base or Current Year Estimate non- LULUCF	Base or Current Year Estimate LULUCF	Base or Current Year Estimate Absolute Value	Level Assessment without LULUCF, from column C	Cumulative Total of Column D'	Level Assessment with LULUCF, from column C	Cumulative Total of Column D (additional LULUCF sources)
Sum		535375	-61309	643884 ^b	1		1	
1.AA.3	CO_2	138822		138822	0.259	0.259	0.216	0.216
1.AA.4	CO_2	102167		102167	0.191	0.450	0.159	0.374
5.A	CO_2		-84861	84861		0.450	0.132	0.506
1.AA.2	CO_2	77213		77213	0.144	0.594	0.120	0.626
1.AA.1	CO_2	61389		61389	0.115	0.709	0.095	0.721
4.D	N_2O	51152		51152	0.096	0.805	0.079	0.801
4.A	CH ₄	27942		27942	0.052	0.857	0.043	0.844
6.A	CH_4	16440		16440	0.031	0.887	0.026	0.870
5.B	CO_2		12540	12540		0.887	0.019	0.889
2.B	N_2O	11093		11093	0.021	0.908	0.017	0.906
2.A	CO ₂	10371		10371	0.019	0.928	0.016	0.923
5.E	N_2O		5550	5550		0.928	0.009	0.931
1.B.2	CO ₂	4006		4006	0.007	0.935	0.006	0.937
4.B	CH ₄	3644		3644	0.007	0.942	0.006	0.943
2.C	CO ₂	3443		3443	0.006	0.948	0.005	0.948
5.D	CO ₂		3370	3370		0.948	0.005	0.954
1.AA.3	N_2O	3174		3174	0.006	0.954	0.005	0.959
4.B	N_2O	3109		3109	0.006	0.960	0.005	0.963

 □ Catégories qui ne sont peut-être pas assez importantes pour être identifiées par l'évaluation de niveau, mais dont la tendance est très différente de celle de l'inventaire général

```
EQUATION 5.4.29

TREND ASSESSMENT (TIER 1)

Source or Sink Category Trend Assessment =

(Source or Sink Category Level Assessment) • | (Source or Sink Category Trend – Total Trend) |

T_{x,t} = E_{x,t} / E_t • | [(E_{x,t} - E_{x,0}) / E_{x,t}] - [(E_t - E_0) / E_t] |
```

Where:

T_{x,t}* = trend assessment, which is the contribution of the source or sink category trend to the overall inventory trend. The Trend Assessment is always recorded as an absolute value, i.e., a negative value is always recorded as the equivalent positive value. The asterisk (*) indicates that, in contrast to Equation 7.2, in Chapter 7 of the GPG2000, LULUCF sources and sinks can be evaluated using this equation.

 $E_{x,t} = |E_{x,t}|$ absolute value of emission or removal estimate of source or sink category x in year t $E_{x,t}$ and $E_{x,0} = \text{real values of estimates of source or sink category x in years t and 0, respectively$

E_t and E₀ = ∑_x E_{x,t} and ∑_x E_{x,0} total inventory estimates in years t and 0, respectively. E_t and E₀ differ from E_t* and E₀* in Equation 5.4.1 in that removals are not entered as absolute values.

Les catégories dont la tendance diverge le plus de la tendance générale doivent être identifiées comme *clés*, lorsque cette divergence est pondérée par le niveau d'émission ou d'absorption de la catégorie au cours de l'année de référence.

Exemple 2 : calcul du taux de contribution de la tendance pour la variable ci-dessous

Réfrigération et air conditionné (AC)

Variable	Value
Emissions from refrigeration and AC in year 0 (Gg CO ₂ eq)	10
Total inventory emissions in year 0 (Gg CO ₂ eq)	95
Emissions from refrigeration and AC / Sum individual emissions	9%
Emissions from refrigeration and AC in year t (Gg CO ₂ eq)	5
Total inventory emissions in year t (Gg CO ₂ eq)	76
Trend assessment tota	0.122

Exemple 2 : étape 1

Réfrigération et air conditionné

Variable	Value
Emissions from refrigeration and AC in year 0 (Gg CO ₂ eq)	(10)
Total inventory emissions in year 0 (Gg CO ₂ eq)	95
Emissions from refrigeration and AC / Sum individual emissions	9%
Emissions from refrigeration and AC in year t (Gg CO ₂ eq)	(5)
Total inventory emissions in year t (Gg CO ₂ eq)	76
Trend assessment total	0.122
Calcul (Ex,t - Ex.0)/ $ Ex,0 \rightarrow (5-10)/ 10 = -0,5$	—

Exemple 2 : étape 2

Réfrigération et air conditionné

10
(95)
9%
5
(76)
0.122
-0.5

(Inventaire complet t - Inventaire complet 0) / | Inventaire complet 0 | \rightarrow (76-95) / | 95 | = - 0,2

Exemple 2 : étape 3

Réfrigération et air conditionné

Variable	Value
Emissions from refrigeration and AC in year 0 (Gg CO ₂ eq)	10
Total inventory emissions in year 0 (Gg CO ₂ eq)	95
Emissions from refrigeration and AC / Sum individual emissions	9%
Emissions from refrigeration and AC in year t (Gg CO ₂ eq)	5
Total inventory emissions in year t (Gg CO ₂ eq)	76
Trend assessment total	0.122
(Ex,t-Ex,0)/ Ex,0	-0.5
(Total inventory t – Total inventory 0) / Total inventory 0	-0.2

Calcul de l'évaluation de la tendance pour la réfrigération et l'AC

$$\rightarrow$$
 (0,09) * $|-0.5 - (-0.2)| = 0.0261$

Exemple 2 : étape 4

Réfrigération et air conditionné

Variable	Value
Emissions from refrigeration and AC in year 0 (Gg CO ₂ eq)	10
Total inventory emissions in year 0 (Gg CO ₂ eq)	95
Emissions from refrigeration and AC / Sum individual emissions	9%
Emissions from refrigeration and AC in year t (Gg CO ₂ eq)	5
Total inventory emissions in year t (Gg CO ₂ eq)	76
Trend assessment total	0.122
(Ex,t-Ex,0)/ Ex,0	-0.5
(Total inventory t – Total inventory 0) / Total inventory 0	-0.2
Trend assessment for refrigeration and AC	0.0261

Calcul de la contribution de la tendance de la réfrigération et de l'AC → 0,0261 / 0,122 = 21,4 %

Approche quantitative - Niveau 1 : évaluation de la tendance

Exemple 2 : étapes 5, 6 et 7

Réfrigération et air conditionné

Variable	Valeur
Émissions causées par la réfrigération et l'AC au cours de l'année 0 (Gg équivalent CO ₂)	10
Total des émissions indiquées dans l'inventaire au cours de l'année 0 (Gg équivalent ${ m CO_2}$)	95
Émissions causées par la réfrigération et l'AC / Somme émissions individuelles	9%
Émissions causées par la réfrigération et l'AC au cours de l'année t (Gg équivalent CO ₂)	5
Total des émissions indiquées dans l'inventaire au cours de l'année t (Gg équivalent CO ₂)	76
Total de l'évaluation de la tendance	0,122
(Ex,t-Ex,0)/ Ex,0	-0,5
(Inventaire complet t – Inventaire complet 0) / Inventaire complet 0	-0,2
Évaluation de la tendance pour la réfrigération et l'AC	0,0261
Taux de contribution à la tendance générale	21,4 %

Répétez la même opération pour toutes les sources et puits, ensuite...

- Classez les sources en fonction de leur contribution à la tendance.
- Calculez la somme de ces contributions.
- Identifiez les sources dont la contribution à la tendance équivaut à 95 % (catégories clés).

Les catégories clés sont basées sur l'analyse des incertitudes et l'évaluation de niveau.

EQUATION 5.4.4 LEVEL ASSESSMENT (TIER 2)

Level Assessment with Uncertainty = Tier 1 Level Assessment \bullet Relative Category Uncertainty $LU_{x,t} = L_{x,t} \bullet U_{x,t}$

Where:

LUx,1 = Level assessment with uncertainty

Lx.t = computed as in Equation 5.4.1

U_{x,t} = relative category uncertainty in year t calculated as described in Section 5.2. The relative uncertainty will always have a positive sign.

Les résultats doivent être classés dans l'ordre décroissant de magnitude.

Les catégories clés sont celles qui équivalent à 90 % de la somme de tous les LUx,t.

Elles doivent être ajoutées aux catégories clés identifiées à l'aide du Niveau 1 et peuvent fournir des informations sur les améliorations d'inventaire.

■ Les catégories clés sont basées sur l'analyse des incertitudes et l'évaluation de la tendance.

EQUATION 5.4.5 TREND ASSESSMENT (TIER 2)

Trend Assessment with Uncertainty = Tier 1 Trend Assessment \bullet Relative Category Uncertainty $TU_{x,t} = T_{x,t} \bullet U_{x,t}$

Where:

TUx,t = trend assessment with uncertainty

Tx,t = trend assessment computed in Equation 5.4.2

U_{x,t} = relative category uncertainty in year t calculated as described in Section 5.2. The relative uncertainty will always have a positive sign.

Les résultats doivent être classés dans l'ordre décroissant de magnitude.

Les catégories clés sont celles qui équivalent à 90 % de la somme de tous les TUx,t.

Elles doivent être ajoutées aux catégories clés identifiées à l'aide du Niveau 1 et peuvent fournir des informations sur les améliorations d'inventaire.

■ Exemple 3 : identification des catégories clés basées sur l'évaluation de niveau (incertitudes incluses) de Niveau 2

Catégorie du GIEC	GES	Émissions (Gg équiv. CO2)	/Ext/ (Gg équiv. CO2)	ТхС
Secteur énergétique : gaz	CO ₂	25	25	25 %
Secteur de l'industrie et de la construction : solides	CO ₂	20	20	20 %
Transport routier	CO ₂	15	15	15 %
Élimination des déchets solides	CH ₄	15	15	15 %
Zones forestières restantes Émissions directes de N₂O causées par les terres	CO ₂	-10	10	10 %
exploitées	N_2O	10	10	10 %
Réfrigération et air conditionné	HFC, PFC	5	5	5 %

■ Exemple 3 : étape 1

Ajouter les taux d'incertitude

	_	ı			
Catégorie du GIEC	GES	Émissions (Gg équiv. CO2)	/Ext/ (Gg équiv. CO2)	ТхС	TxI
Secteur énergétique : gaz	CO ₂	25	25	25 %	10 %
Secteur de l'industrie et de la					
construction : solides	CO_2	20	20	20 %	15 %
Transport routier	CO ₂	15	15	15 %	10 %
Élimination des déchets solides	CH ₄	15	15	15 %	25 %
Zones forestières restantes	CO_2	-10	10	10 %	40 %
Émissions directes de N2O causées par les					\
terres exploitées	N_2O	10	10	10 %	50 %
Réfrigération et air conditionné	HFC, PFC	5	5	5 %	45 %

Exemple 3 : étape 2

Multipliez le	taux
d'incertitude	par le taux de
contribution	

Catégorie du GIEC	GES	Émissions (Gg équiv. CO2)	/Ext/ (Gg équiv. CO2)	ТхС	Txl	ТхО* ТхІ
Secteur énergétique : gaz Secteur de l'industrie et de la	CO ₂	25	25	25 %	10 %	2,5 %
construction : solides	CO_2	20	20	20 %	15 %	3,0 %
Transport routier	CO ₂	15	15	15 %	10 %	1,5 %
Élimination des déchets solides	CH ₄	15	15	15 %	25 %	3,8 %
Zones forestières restantes Émissions directes de N₂O causées par les	CO ₂	-10		10 %		
terres exploitées	N_2O	10	10	10 %	50 %	5,0 %
Réfrigération et air conditionné	HFC, PFC	5	5	5 %	45 %	2,3 %

■ Exemple 3 : étape 3

Catégorie du GIEC	GES	Émissions (Gg équiv. CO2)	/Ext/ (Gg équiv. CO2)	ТхС	TxI	TxC * TxI
Secteur énergétique : gaz Secteur de l'industrie et de la construction :	CO ₂	25	25	25 %	10 %	2,5 %
solides	CO ₂	20	20	20 %	15 %	3,0 %
Transport routier	CO ₂	15	15	15 %	10 %	1,5 %
Élimination des déchets solides	CH ₄	15	15	15 %	25 %	3,8 %
Zones forestières restantes Émissions directes de N₂O causées par les	CO ₂	-10	10	10 %	40 %	4,0 %
terres exploitées	N ₂ O	10	10	10 %	50 %	5,0 %
Réfrigération et air conditionné	HFC, PFC	5	5	5 %	45 %	2,3 %
Total		80	100		>	22 %

Calculez le total

Exemple 3 : étape 4

Catégorie du GIEC	GES	Émissions (Gg équivalen t CO2)	(Gg	ТхС	TxI	TxC * TxI	% total	┝
Secteur énergétique : gaz	CO_2	25	25	25 %	10 %	2,5 %	11,4 %	,
Secteur de l'industrie et de la								
construction : solides	CO_2	20	20	20 %	15 %	3,0 %	13,6 %	
Transport routier	CO_2	15	15	15 %	10 %	1,5 %	6,8 %	,
Élimination des déchets solides	CH ₄	15	15	15 %	25 %	3,8 %	17,0 %	,
Zones forestières restantes	CO_2	-10	10	10 %	40 %	4,0 %	18,2 %	,
Émissions directes de N₂O causées								
par les terres exploitées	N_2O	10	10	10 %	50 %	5,0 %	22,7 %	,
					- ├			
Réfrigération et air conditionné	HFC, PFC	5	5	5 %	45 %	2,3 %	10,2 %	,
Total		80	Calco	lez le %	total	22 %		

Ex.: 0,025/0,22 = 11,4 %

■ Exemple 3 : étape 5

							Ψ.	
Catégorie du GIEC		Émissions (Gg équivalen	(Gg	ТхС	TxI	TxC * TxI	% total	
		t CO2)	ent CO2)) Élevé
Émissions directes de N₂O causées								
par les terres exploitées	N_2O	10	10	10 %	50 %	5,0 %	22,7 %	
Zones forestières restantes	CO_2	-10	10	10 %	40 %	4,0 %	18,2 %	
Élimination des déchets solides	CH ₄	15	15	15 %	25 %	3,8 %	17,0 %	
Secteur de l'industrie et de la								
construction : solides	CO_2	20	20	20 %	15 %	3,0 %	13,6 %	
Secteur énergétique : gaz	CO_2	25	25	25 %	10 %	2,5 %	11,4 %	V
								Faible
Réfrigération et air conditionné	HFC, PFC	5	5	5 %	45 %	2,3 %	10,2 %	
Transport routier	CO_2	15	15	15 %	10 %	1,5 %	6,8 %	
Total		80	100			22 %		•

Classez

■ Exemple 3 : étape 6

Calculez la somme et identifiez le taux de contribution de 90 %

Catégorie du GIEC	GES	Émissions (Gg équiv. CO2)	/Ext/ (Gg équiv. CO2)	TxC	Txl	TxC * TxI	% total	Somme des %
Émissions directes de N ₂ O causées par								
les terres exploitées	N2O	10	10	10 %	50 %	5,0 %	22,7 %	22,7 %
Zones forestières restantes	CO2	-10	10	10 %	40 %	4,0 %	18,2 %	40,9 %
Élimination des déchets solides	CH4	15	15	15 %	25 %	3,8 %	17,0 %	58,0 %
Secteur de l'industrie et de la								
construction : solides	CO2	20	20	20 %	15 %	3,0 %	13,6 %	71,6 %
Secteur énergétique : gaz	CO2	25	25	25 %	10 %	2,5 %	11,4 %	83,0 %
Réfrigération et air conditionné	HFC, PFC	5	5	5 %	45 %	2,3 %	10,2 %	93,2 %
Transport routier	CO2	15	15	15 %	10 %	1,5 %	6,8 %	100,0 %

Critères qualitatifs

- □ Techniques et technologies d'atténuation : si des émissions causées par une catégorie sont réduites ou si des absorptions ont augmenté suite à l'utilisation de certaines techniques d'atténuation des changements climatiques, il est recommandé d'identifier ces catégories comme clés.
- Forte croissance prévue des émissions ou absorptions : si le bureau d'inventaire prévoit, dans le futur, une augmentation importante des émissions ou absorptions causées par une catégorie particulière, il est encouragé à identifier cette catégorie comme clé. Certaines de ces catégories seront identifiées par l'évaluation de la tendance ou seront identifiées dans le futur. Puisqu'il est important d'appliquer dès que possible une méthode recommandée de niveau supérieur, l'identification précoce des catégories clés à l'aide de critères qualitatifs est tout aussi essentielle.
- Taux d'incertitude élevé : si le bureau d'inventaire ne prend pas explicitement en compte le taux d'incertitude en utilisant la méthode de Niveau 2 pour identifier les catégories clés, il devrait peut-être identifier les catégories les plus incertaines comme clés. En effet, il est possible de réaliser des réductions très importantes du taux d'incertitude d'inventaire général en améliorant les estimations des catégories très incertaines.

Groupe Consultatif d'Experts (GCE)

Critères qualitatifs

- Baisse/Hausse imprévue des émissions ou absorptions : lorsque les émissions ou absorptions sont très supérieures ou inférieures aux prévisions élaborées à l'aide des méthodes indiquées dans les Lignes directrices du GIEC, ces catégories devraient être considérées comme clés. En outre, il faut porter une attention particulière au AQ/CQ.
- Stocks importants : lorsqu'un faible flux net résulte de la soustraction de fortes émissions et absorptions, le taux d'incertitude peut être très élevé. C'est pourquoi, lorsqu'une méthode d'estimation de Niveau 1 est remplacée par celle d'un niveau supérieur, l'ordre des catégories sources du GIEC peut changer, c.-à-d. que les catégories auparavant jugées négligeables peuvent désormais être jugées comme importantes.
- Déforestation : lors d'une analyse quantitative des catégories clés, la déforestation est répartie en plusieurs catégories de changements d'utilisation des terres (par exemple, la catégorie Terres converties en prairies est traitée séparément de la catégorie Terres converties en terres cultivables). Pour assurer la conformité avec les Lignes directrices du GIEC, les pays doivent identifier et additionner les estimations d'émissions associées à la conversion de forêts en d'autres catégories de terres. La « déforestation » doit être considérée comme une clé si cette somme est supérieure à la catégorie clé jugée la moins importante d'après l'analyse quantitative.

Groupe Consultatif d'Experts (GCE)

Documents de formation concernant les inventaires nationaux des gaz à effet de serre

Critères qualitatifs

■ Exhaustivité: une approche de Niveau 1 ou 2 ne donnera pas de résultats corrects tant que l'inventaire n'est pas terminé. L'analyse peut toujours être effectuée, mais il se peut que des catégories clés ne soient pas évaluées. Si tel est le cas, il est recommandé d'examiner les catégories potentiellement clés d'un point de vue qualitatif, en appliquant pour ce faire les considérations qualitatives ci-dessus. L'inventaire d'un pays dont le contexte national est similaire peut s'avérer être une bonne source d'indications sur les catégories clés potentielles.

Élaboration de rapports et documentation

- Les bonnes pratiques consistent à :
 - documenter clairement les résultats de l'ACC dans le rapport d'inventaire ;
 - * répertorier les critères suivis pour identifier chaque catégorie comme clé ;
 - → Exemples : le niveau, la tendance ou l'approche qualitative
 - préciser la méthode utilisée pour procéder à l'ACC quantitative ;
 - ♦ Niveau 1 et/ou Niveau 2
 - répertorier les résultats du rapport à l'aide des tableaux du GIEC.

Tableaux de reporting

SPREAD	SUFET FOR THE	TIER LANA		TABLE 5.4.2	T INCLUDING LU	LUCE	CATECORI	re		
A IPCC Source/Sink Categories		B Freenhouse	Base of Curre of Em Remo	C or nt Year Estimate issions or	D Level Assess	ment F,		E ive Total of		
Total	SF	READSHEET	FOR TH	E TIER I ANALYSIS	TABLE 5.4.3 S – TREND ASSESS	MENT I	NCLUDING	LULUCF CAT	EGORIES	
	A	1	3	С	D		E	F	G	
	IPCC Source/Sink Categories	Direct Greenh Gas	ouse	Base Year Estimate	Current Year Estimate	Asses	d sment	% Contribution to Trend	Cumulative Total of Column F	
		\pm				 	Таві	E 5.4.5		
		+-				KEY C	ATEGORY /	ANALYSIS SUM	MARY	
	Total		Quant	itative Method U	sed for Key Cat	egory /			Fier 2 🗇	
		A IPCC Catego	Source/Sink ory	B Direct Greenho Gas	use	C Key Cate (Yes or N	gory Flag	D If C is Yes, Criteria for Identification	Comments	

Groupe Consultatif d'Experts (GCE)

Documents de formation concernant les inventaires nationaux des gaz à effet de serre

Analyse des catégories clés - Récapitulatif/Liste de vérification

	S'il s'agit d'un premier inventaire, préparez un inventaire préliminaire pour l'année qui vous intéresse en
	appliquant des méthodes de Niveau 1 pour toutes les catégories.
	Si vous disposez déjà d'un inventaire des GES, utilisez les données les plus récentes sur les GES.
	Répertoriez séparément les catégories de sources et puits.
	Exprimez les émissions en ${\rm CO_2}$ éq à l'aide des valeurs du PRP du GIEC.
	Classez les catégories dans l'ordre décroissant de magnitude des émissions/absorptions.
	Calculez la contribution relative de chaque catégorie en fonction de sa quantité totale émise ou absorbée.
	Calculez la somme des contributions relatives de toutes les catégories, puis déterminez le seuil au-delà
	duquel les quantités nationales émises ou absorbées atteignent 95 %.
	Les catégories clés sont celles qui appartiennent aux catégories cumulant plus de 95 % des émissions
	nationales de GES.

Convention-cadre des Nations-Unies sur les Changements climatiques

ÉTUDE DE CAS: CHILI

Exemple

Inventaire 2000 des GES du Chili (Gg équivalent CO₂)

Secteur/sous-secteur	Émissions de CO ₂ (Gg/an)	Absorption de CO ₂ (Gg/an)	CH _₄ (Gg éq/an)	N₂O (Gg éq/an)	Total
Total national	53 623,5	-29 819,20	11 755,8	7 812,0	43 372,1
1. Énergie	48 730,0	0	2 190,3	341,0	51 261,3
1.A. Combustion de combustibles	48 730,0		840,0	341,0	49 911,0
1.A.1. Secteur énergétique	15 842,8		6,3	62,0	15 911,1
1.A.2. Manufacture, construction et exploitation minière	12 142,6		14,7	31,0	12 188,3
1.A.3. Transport	16 013,3		56,7	62,0	16 132,0
1.A.4. Commerces, institutions, résidences	4 146,7		18,9	0,0	4 165,6
1.A.5. Industrie de la pêche	584,7		4,2	0,0	588,9
1.A.6 Bois et biomasse (autre que CO2)			741,3	217,0	958,3
Émissions fugitives causées par les combustibles			1 350,3	0,0	1 350,3
1.B.1. Combustibles solides			71,4	0,0	71,4
1.B.2. Pétrole et gaz naturel			1 278,9	0,0	1 278,9
2 Processus industriels	4 153,6	0	123,9	155,0	4 432,5
2.A. Produits minéraux	2 336,8		0,0	0,0	2 336,8
2.B. Industrie chimique	0		123,9	155,0	278,9
2.C. Production de métaux	1 816,8		0,0	0,0	1 816,8
2.D. Autre (pâte et papier, nourriture et boissons)	NA		NA	NA	NA
2.E. Production de SF6 et de PFC					
2.F. Consommation de SF6 et de PFC					
2.G. Autre (précisez)	ND		ND	ND	ND
Utilisation de solvants et autres produits	ND		0,0	ND	ND
	C	amandtatif all Euroau	4- (CCE)		

Exemple

Inventaire 2000 des GES du Chili (Gg équivalent CO₂) cont.

4. Agriculture			6 207,6	6 882,0	13 089,6
4.A. Fermentation entérique			4 796,4	0.0	4 796,4
4.B. Gestion du fumier			1 241,1	310,0	1 551,1
4.C. Culture du riz			115,5	0,0	115,5
4.D. Terres agricoles			0,0	6 572,0	6 572,0
4.E. Brûlage contrôlé des savanes			Non	Non	Non
4.F. Brûlage des résidus agricoles			54,6	31,0	85,6
4.G. Autre (précisez)			ND	ND	ND
5. UTCATF	703,1	-29 819,2	1 331,4	341,0	-27 443,7
5.B. Modifications des forêts et autres stocks de biomasses ligneuses	613,5	0	0,0	0,0	613,5
5.B. Conversion des forêts et des prairies	0	-1 033,6	12,6	0,0	-1 021,0
5.C. Abandon des terres exploitées		0	0,0	0,0	0,0
 5.D. Émissions et absorptions de CO2 causées par les terres 	86,3	-28 785,5	0,0	0,0	-28 699,2
5.E. Autre (précisez)	ND	ND	ND	ND	ND
6. Déchets	36,9		1 902,6	93,0	2 032,5
6.A. Élimination des déchets solides sur terre			1 797,6	0,0	1 797,6
6.B. Traitement des eaux usées			105,0	0,0	105,0
6.C. Incinération des déchets	36,9		0,0	0,0	36,9
6.D. Autre (émissions indirectes de N2O)			NA	93,0	93,0
7. Autre (précisez)	ND	ND	ND	ND	ND
Postes pour mémoire					
Soutes internationales	3 059,8		2,1	0,0	3 061,9
Aviation	1 045,1		2,1	0,0	1 047,2
Marine	2 014,7		0,0	0,0	2 014,7
Émissions de CO2 causées par la biomasse	16 721,5		0,0	0,0	16 721,5

Classement des catégories

Gaz	Catégories clés	Secteur	Émissions d'équivalent CO ₂ en Gg/an (UTCATF exclu)	Somme des % (UTCATF exclu)	Émissions d'équivalent CO ₂ en Gg/an (UTCATF inclus)	Somme des % (UTCATF inclus)
CO ₂	Zones forestières restantes	UTCATF			28 784,2	28,0 %
CO ₂	Combustion fixe (Solides)	Énergie	15 842,8	22,4 %		43,4 %
CO ₂	Combustion mobile : transport routier	Énergie	15 002,3	43,7 %		58,0 %
	Manufacture construction at	Énergie	12 142,6	60,8 %		69,8 %
N ₂ O	Il arrae agricolae (diractae at	Agriculture	6 562,5	70,1 %		76,2 %
CH ₄	Fermentation entérique	Agriculture	4 796,0	76,9 %		80,8 %
CO_2	Autres secteurs : résidences	Énergie	3 508,8	81,9 %		84,3 %
_	industrie de l'acier et du fer	Processus industriels	1 816,8	84,5 %		86,0 %
CH₄	Sites d'élimination des déchets solides	Résidus	1 796,8	87,0 %		87,8 %
	Production de ciment	Processus industriels	1 638,4	89,4 %		89,4 %
CH₄	Émissions fugitives causées par les activités pétrolières et gazières	Énergie	1 277,9	91,2 %		90,7 %
CH₄	Gestion du fumier	Agriculture	1 241,1	93,0 %		91,9 %
CH₄	Zones forestières restantes	UTCATF		93,0 %	1 233,1	94,1 %
CO ₂	Terres converties en territoire forestier	UTCATF		93,0 %	1 026,2	94,1 %
	Autre (énergie)	Énergie	741,0	94,0 %		94,8 %
CO ₂	Combustion mobile : aviation	Énergie	663,0	94,9 %		95,4 %
CO ₂	Production de chaux Documents de for	industriels	onsųl <u>ta</u> tif d'E	,		o= à off=t -!-

Détermination des sous-catégories importantes

	MODULE	AGRICULTURE						
	SOUS-MODULE	ÉMISSIONS DE MÉTHANE ET D'OXYDE DE DIAZOTE CAUSÉES PAR LE BÉTAIL						
		FERMENTATION ENTÉRIQUE ET GESTION DU FUMIER						
	EFILL LE DE							
	CALCUL	4-1						
	FEUILLE	UILLE 1 SUR 2 : ÉMISSIONS DE MÉTHANE CAUSÉES PAR LA FERMENTATION ENTÉRIQUE DU BÉTAIL						
		ET LA GESTION DU FUMIER						
		ÉTAPE 1		ÉTA	ÉTAPE 3			
	A	В	С	D	E	F		
Type de bétail	Nombre d'animaux	Facteur d'émissions pour la fermentation entérique	Émissions causées par la fermentation entérique	Facteur d'émissions pour la gestion du fumier	Émissions causées par la gestion du fumier	Émissions annuelles totales causées par le bétail		
	(1000s)	(kg/tête/an)	(t/an)	(kg/tête/an)	(t/an)	(Gg)		
			$C = (A \times B)_{22.0/4}$		$E = (A \times D)_{13.0\%}$	F = (C + E)/1000		
Bétail laitier	550	81	44 550	19	10 450	55,00		
Bétail autre que laitier	2 750	49	134 750	13	35 750	170,50		
Buffles/Bisons	0	55	0 6%	7	0 <1 %	0,00		
Moutons	2 500	5	12 500 <3 %	0,16	400 <1 %	12,90		
Chèvres	500	5	2 500 <3 %	0,17	₈₅ <1 %	2,59		
Chameaux	125	46	5 750 <3 %	1,9	237,5	5,99		
Chevaux	75	18	1 350 <3 %	1,6	120 <1 %	-, . ,		
Mules et ânes	25	10	250 <3 %	0,9	_{22,5} SIGN	N. 43 % _{0,27}		
Porcs	5 030	I I	5 030	7	35 210 <1 %	40,24		
Volaille	15 000	ND	ND	0,018	270	ND		
Totaux			206 680		82 545	288,96		

Documents complémentaires utiles

- □ Recommandations du GIEC en matière de bonnes pratiques et de gestion des incertitudes pour les inventaires nationaux de gaz à effet de serre
 - http://www.ipcc-nggip.iges.or.jp/public/gp/english/
- US-EPA Recueil de modèles pour le développement d'un système d'inventaire national des GES
 - http://epa.gov/climatechange/emissions/ghginventorycapacitybuilding/templates.html

