

Electricity Technology in a Carbon-Constrained Future

UNFCCC SB-26 May 15, 2007

Bryan Hannegan, Ph.D. Vice President - Environment

Comparative Costs in 2010-2015

Levelized Cost of Electricity, \$/MWh

Key Technology Challenges

Significant cost-effective CO₂ reductions from the U.S. electric sector will require <u>ALL</u> of the following technology advances:

- 1. Smart grids and communications infrastructures to enable end-use efficiency and demand response, distributed generation, and PHEVs.
- 2. A grid infrastructure with the capacity and reliability to operate with 20-30% intermittent renewables in specific regions.
- 3. Significant expansion of nuclear energy enabled by continued safe and economic operation of existing nuclear fleet; and a viable strategy for managing spent fuel.
- 4. Commercial-scale coal-based generation units operating with 90+% CO₂ capture and storage in a variety of geologies.

Example: Dynamic Energy Management

Average Annual Funding R&D Gap

million \$/yr

	2007- 2011	2012- 2016	2017- 2021	2022- 2026	2027- 2031	Avg
ENABLE ENERGY EFFICIENCY & DER Smart grids and communications infrastructures to enable end-use efficiency and demand response, DER (i.e. Solar PV) and PHEVs. Improve equipment efficiency.	\$310	\$290	\$240	\$140	\$120	\$220
GRID INTEGRATION WITH RENEWABLES A grid infrastructure with the capacity and reliability to operate with 20-30% intermittent renewable generation in specific regions.	\$400	\$370	\$330	\$300	\$300	\$340
NUCLEAR Significant expansion of nuclear energy enabled by continued operation of the existing nuclear fleet and a viable strategy for managing spent fuel. Includes new RD&D for ALWR deployment support.	\$170	\$170	\$170	\$100	\$100	\$140
ADVANCED COAL, CO ₂ CAPTURE and STORAGE Commercial-scale coal-based generation units operating with ~90% CO2 capture and storage in a variety of geologies.	\$830	\$800	\$800	\$620	\$400	\$690
Total	\$1710	\$1630	\$1540	\$1160	\$920	\$1390

V3 ;4-19-07 HC

Comparative Costs in 2020-2025

Levelized Cost of Electricity, \$/MWh

U.S. Electricity Sector CO₂ Emissions

Technology Deployment Targets

Technology	EIA 2007 Base Case	EPRI Analysis Target*			
Efficiency	Load Growth ~ +1.5%/yr	Load Growth ~ +1.1%/yr			
Renewables	30 GWe by 2030	70 GWe by 2030			
Nuclear Generation	12.5 GWe by 2030	64 GWe by 2030			
Advanced Coal Generation	No Existing Plant Upgrades 40% New Plant Efficiency by 2020–2030	150 GWe Plant Upgrades 46% New Plant Efficiency by 2020; 49% in 2030			
Carbon Capture and Storage (CCS)	None	Widely Available and Deployed After 2020			
Plug-in Hybrid Electric Vehicles (PHEV)	None	10% of New Vehicle Sales by 2017; +2%/yr Thereafter			
Distributed Energy Resources (DER) (including distributed solar)	< 0.1% of Base Load in 2030	5% of Base Load in 2030			

EPRI analysis targets do not reflect economic considerations, or potential regulatory and siting constraints.

CO₂ Reductions ... Technical Potential*

U.S. Electricity Generation: 2030

^{*} Base case from EIA "Annual Energy Outlook 2007"

Initial Economic Results in Brief

Absent advanced electricity technologies, CO₂ constraints result in

- Price-induced "demand destruction"
- Fuel switching to natural gas
- Higher electricity prices
- High cost to U.S. economy

With advanced electricity technologies, CO₂ constraints result in

- Growth in electrification
- Continued use of coal (w/CCS) and nuclear
- Lower, more stable electricity prices
- 50-66% lower cost to U.S. economy

Results insensitive to CO₂ constraints and capital cost assumptions

CONCLUSION

Substantial reduction of GHG emissions without unreasonable costs together with reduced oil-gas dependency

IS POSSIBLE:

THE PATHWAY: PARALLEL AND PRO-ACTIVE ACTION

- 1. Unleash the potential of energy efficiency
- 2. Develop a low-carbon electricity system by using all available options
- 3. Intelligent electrification of the economy
- 4. Consistent deployment and a marketoriented approach
- 5. Global cooperation on global issues